diff options
author | Wojtek Kosior <wk@koszkonutek-tmp.pl.eu.org> | 2021-04-30 00:33:56 +0200 |
---|---|---|
committer | Wojtek Kosior <wk@koszkonutek-tmp.pl.eu.org> | 2021-04-30 00:33:56 +0200 |
commit | aa4d426b4d3527d7e166df1a05058c9a4a0f6683 (patch) | |
tree | 4ff17ce8b89a2321b9d0ed4bcfc37c447bcb6820 /openssl-1.1.0h/crypto/ec/ec_cvt.c | |
download | smtps-and-pop3s-console-program-master.tar.gz smtps-and-pop3s-console-program-master.zip |
Diffstat (limited to 'openssl-1.1.0h/crypto/ec/ec_cvt.c')
-rw-r--r-- | openssl-1.1.0h/crypto/ec/ec_cvt.c | 95 |
1 files changed, 95 insertions, 0 deletions
diff --git a/openssl-1.1.0h/crypto/ec/ec_cvt.c b/openssl-1.1.0h/crypto/ec/ec_cvt.c new file mode 100644 index 0000000..bfff6d6 --- /dev/null +++ b/openssl-1.1.0h/crypto/ec/ec_cvt.c @@ -0,0 +1,95 @@ +/* + * Copyright 2001-2016 The OpenSSL Project Authors. All Rights Reserved. + * + * Licensed under the OpenSSL license (the "License"). You may not use + * this file except in compliance with the License. You can obtain a copy + * in the file LICENSE in the source distribution or at + * https://www.openssl.org/source/license.html + */ + +/* ==================================================================== + * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. + * + * Portions of the attached software ("Contribution") are developed by + * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. + * + * The Contribution is licensed pursuant to the OpenSSL open source + * license provided above. + * + * The elliptic curve binary polynomial software is originally written by + * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems Laboratories. + * + */ + +#include <openssl/err.h> +#include "ec_lcl.h" + +EC_GROUP *EC_GROUP_new_curve_GFp(const BIGNUM *p, const BIGNUM *a, + const BIGNUM *b, BN_CTX *ctx) +{ + const EC_METHOD *meth; + EC_GROUP *ret; + +#if defined(OPENSSL_BN_ASM_MONT) + /* + * This might appear controversial, but the fact is that generic + * prime method was observed to deliver better performance even + * for NIST primes on a range of platforms, e.g.: 60%-15% + * improvement on IA-64, ~25% on ARM, 30%-90% on P4, 20%-25% + * in 32-bit build and 35%--12% in 64-bit build on Core2... + * Coefficients are relative to optimized bn_nist.c for most + * intensive ECDSA verify and ECDH operations for 192- and 521- + * bit keys respectively. Choice of these boundary values is + * arguable, because the dependency of improvement coefficient + * from key length is not a "monotone" curve. For example while + * 571-bit result is 23% on ARM, 384-bit one is -1%. But it's + * generally faster, sometimes "respectfully" faster, sometimes + * "tolerably" slower... What effectively happens is that loop + * with bn_mul_add_words is put against bn_mul_mont, and the + * latter "wins" on short vectors. Correct solution should be + * implementing dedicated NxN multiplication subroutines for + * small N. But till it materializes, let's stick to generic + * prime method... + * <appro> + */ + meth = EC_GFp_mont_method(); +#else + if (BN_nist_mod_func(p)) + meth = EC_GFp_nist_method(); + else + meth = EC_GFp_mont_method(); +#endif + + ret = EC_GROUP_new(meth); + if (ret == NULL) + return NULL; + + if (!EC_GROUP_set_curve_GFp(ret, p, a, b, ctx)) { + EC_GROUP_clear_free(ret); + return NULL; + } + + return ret; +} + +#ifndef OPENSSL_NO_EC2M +EC_GROUP *EC_GROUP_new_curve_GF2m(const BIGNUM *p, const BIGNUM *a, + const BIGNUM *b, BN_CTX *ctx) +{ + const EC_METHOD *meth; + EC_GROUP *ret; + + meth = EC_GF2m_simple_method(); + + ret = EC_GROUP_new(meth); + if (ret == NULL) + return NULL; + + if (!EC_GROUP_set_curve_GF2m(ret, p, a, b, ctx)) { + EC_GROUP_clear_free(ret); + return NULL; + } + + return ret; +} +#endif |