1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
|
! Copyright 2019 Wojciech Kosior
! This is free and unencumbered software released into the public domain.
! Anyone is free to copy, modify, publish, use, compile, sell, or
! distribute this software, either in source code form or as a compiled
! binary, for any purpose, commercial or non-commercial, and by any
! means.
! In jurisdictions that recognize copyright laws, the author or authors
! of this software dedicate any and all copyright interest in the
! software to the public domain. We make this dedication for the benefit
! of the public at large and to the detriment of our heirs and
! successors. We intend this dedication to be an overt act of
! relinquishment in perpetuity of all present and future rights to this
! software under copyright law.
! THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
! EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
! MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
! IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
! OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
! ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
! OTHER DEALINGS IN THE SOFTWARE.
! For more information, please refer to <http://unlicense.org/>
MODULE quadratures
IMPLICIT none
integer(kind=8) :: subintervals = 100
INTERFACE
FUNCTION integrate(ibeg, iend, myfun, p) result(val)
IMPLICIT none
! beginning of integration interval
real(kind=8), intent(in) :: ibeg
! ending of integration interval
real(kind=8), intent(in) :: iend
! function to be integrated
procedure(funint) :: myfun
! polynomial order
integer(kind=4), intent(in) :: p
! result of integration
real(kind=8) :: val
END FUNCTION integrate
END INTERFACE
INTERFACE
FUNCTION quadrature(qbeg, qend, fun) result(val)
IMPLICIT none
real(kind=8), intent(in) :: qbeg, qend
procedure(funint) :: fun
real(kind=8) :: val
END FUNCTION quadrature
END INTERFACE
INTERFACE
FUNCTION funint(x) result(y)
IMPLICIT none
real(kind=8), intent(in) :: x
real(kind=8) :: y
END FUNCTION funint
END INTERFACE
CONTAINS
FUNCTION integrate_generic(ibeg, iend, fun, quad) result(val)
IMPLICIT none
real(kind=8), intent(in) :: ibeg
real(kind=8), intent(in) :: iend
procedure(funint) :: fun
procedure(quadrature) :: quad
real(kind=8) :: val, subinterval_width, qbeg, qend, partsums(48)
logical :: partsums_mask(48) = .true.
real(kind=8), allocatable :: partval[:]
integer(kind=8) :: min_i, max_i, i, j, subintervals_per_thread
integer(kind=4) :: im
allocate(partval[*])
subintervals_per_thread = &
(subintervals + num_images() - 1) / num_images()
min_i = subintervals_per_thread * (this_image() - 1) + 1
max_i = min(subintervals, subintervals_per_thread * this_image())
subinterval_width = (iend - ibeg) / subintervals
! compute integral using quadrature pointed by quad
partval = 0
DO i = min_i, max_i
qend = ibeg + i * subinterval_width
qbeg = ibeg + (i - 1) * subinterval_width
val = quad(qbeg, qend, fun)
DO j = 1, 48
IF (partsums_mask(j)) THEN
partsums_mask(j) = .false.
partsums(j) = val
EXIT
END IF
val = val + partsums(j)
partsums_mask(j) = .true.
END DO
END DO
partval = 0
DO j = 1, 48
IF (.not. partsums_mask(j)) partval = partval + partsums(j)
END DO
IF (this_image() == 1 .and. num_images() > 1) THEN
sync images([(im, im = 2, num_images())])
partval = partval + sum([(partval[im], im = 2, num_images())])
sync images([(im, im = 2, num_images())])
END IF
IF (this_image() /= 1) THEN
sync images(1)
sync images(1)
END IF
val = partval[1]
END FUNCTION integrate_generic
FUNCTION newton_cotes(ibeg, iend, fun, p) result(val)
USE, intrinsic :: ieee_arithmetic
IMPLICIT none
real(kind=8), intent(in) :: ibeg
real(kind=8), intent(in) :: iend
procedure(funint) :: fun
integer(kind=4), intent(in) :: p
real(kind=8) :: val
procedure(quadrature), pointer :: quad
SELECT CASE (p)
CASE (0)
quad => rectangle
CASE (1)
quad => trapeze
CASE (2)
quad => simpson_1_third
CASE default
val = ieee_value(val, ieee_quiet_nan)
RETURN
END SELECT
val = integrate_generic(ibeg, iend, fun, quad)
END FUNCTION newton_cotes
FUNCTION rectangle(qbeg, qend, fun) result(val)
IMPLICIT none
real(kind=8), intent(in) :: qbeg, qend
procedure(funint) :: fun
real(kind=8) :: val
val = (qend - qbeg) * fun((qend + qbeg) * 0.5)
END FUNCTION rectangle
FUNCTION trapeze(qbeg, qend, fun) result(val)
IMPLICIT none
real(kind=8), intent(in) :: qbeg, qend
procedure(funint) :: fun
real(kind=8) :: val
val = (qend - qbeg) * 0.5 * (fun(qbeg) + fun(qend))
END FUNCTION trapeze
FUNCTION simpson_1_third(qbeg, qend, fun) result(val)
IMPLICIT none
real(kind=8), intent(in) :: qbeg, qend
procedure(funint) :: fun
real(kind=8) :: val
val = (qend - qbeg) * (1/6.0) * &
(fun(qbeg) + 4 * fun ((qbeg + qend) * 0.5) + fun(qend))
END FUNCTION simpson_1_third
FUNCTION gauss(ibeg, iend, fun, p) result(val)
USE, intrinsic :: ieee_arithmetic
IMPLICIT none
real(kind=8), intent(in) :: ibeg
real(kind=8), intent(in) :: iend
procedure(funint) :: fun
integer(kind=4), intent(in) :: p
real(kind=8) :: val
procedure(quadrature), pointer :: quad
SELECT CASE (p)
CASE (1)
quad => gauss_n1
CASE (2)
quad => gauss_n2
CASE (3)
quad => gauss_n3
CASE default
val = ieee_value(val, ieee_quiet_nan)
RETURN
END SELECT
val = integrate_generic(ibeg, iend, fun, quad)
END FUNCTION gauss
FUNCTION gauss_generic(mid, halfwidth, fun, points, weights) &
result(val)
IMPLICIT none
real(kind=8), intent(in) :: mid, halfwidth, points(:), weights(:)
procedure(funint) :: fun
real(kind=8) :: val
integer(kind=4) :: i
val = halfwidth * sum(weights * &
[(fun(points(i) * halfwidth + mid), i = 1, size(points))])
END FUNCTION gauss_generic
FUNCTION gauss_n1(qbeg, qend, fun) result(val)
IMPLICIT none
real(kind=8), intent(in) :: qbeg, qend
procedure(funint) :: fun
real(kind=8) :: val, weights(1) = [2], points(1) = [0]
val = gauss_generic((qbeg + qend) * 0.5, (qend - qbeg) * 0.5, &
fun, points, weights)
END FUNCTION gauss_n1
FUNCTION gauss_n2(qbeg, qend, fun) result(val)
IMPLICIT none
real(kind=8), intent(in) :: qbeg, qend
procedure(funint) :: fun
real(kind=8) :: val, weights(2) = [1, 1], &
points(2) = [1 / sqrt(3.0), -1 / sqrt(3.0)]
val = gauss_generic((qbeg + qend) * 0.5, (qend - qbeg) * 0.5, &
fun, points, weights)
END FUNCTION gauss_n2
FUNCTION gauss_n3(qbeg, qend, fun) result(val)
IMPLICIT none
real(kind=8), intent(in) :: qbeg, qend
procedure(funint) :: fun
real(kind=8) :: val, weights(3) = [8 / 9.0, 5 / 9.0, 5 / 9.0],&
points(3) = [0.0, sqrt(3 / 5.0), -sqrt(3 / 5.0)]
val = gauss_generic((qbeg + qend) * 0.5, (qend - qbeg) * 0.5, &
fun, points, weights)
END FUNCTION gauss_n3
END MODULE quadratures
|