aboutsummaryrefslogtreecommitdiff
path: root/src/quadratures.f90
blob: 6fbb5cbd99f4b186e2b408db9537dd709dbb3a70 (about) (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
! Copyright 2019 Wojciech Kosior
  
! This is free and unencumbered software released into the public domain.

! Anyone is free to copy, modify, publish, use, compile, sell, or
! distribute this software, either in source code form or as a compiled
! binary, for any purpose, commercial or non-commercial, and by any
! means.

! In jurisdictions that recognize copyright laws, the author or authors
! of this software dedicate any and all copyright interest in the
! software to the public domain. We make this dedication for the benefit
! of the public at large and to the detriment of our heirs and
! successors. We intend this dedication to be an overt act of
! relinquishment in perpetuity of all present and future rights to this
! software under copyright law.

! THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
! EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
! MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
! IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
! OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
! ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
! OTHER DEALINGS IN THE SOFTWARE.

! For more information, please refer to <http://unlicense.org/>

MODULE quadratures

  IMPLICIT none
  
  integer(kind=8) :: subintervals = 100
  
  INTERFACE
     FUNCTION integrate(ibeg, iend, myfun, p) result(val)
       IMPLICIT none
       ! beginning of integration interval
       real(kind=8), intent(in) :: ibeg
       ! ending of integration interval
       real(kind=8), intent(in) :: iend
       ! function to be integrated
       procedure(funint) :: myfun
       ! polynomial order
       integer(kind=4), intent(in) :: p
       ! result of integration
       real(kind=8) :: val
     END FUNCTION integrate
  END INTERFACE
  
  INTERFACE
     FUNCTION quadrature(qbeg, qend, fun) result(val)
       IMPLICIT none
       real(kind=8), intent(in) :: qbeg, qend
       procedure(funint) :: fun
       real(kind=8) :: val
     END FUNCTION quadrature
  END INTERFACE
  
  INTERFACE
     FUNCTION funint(x) result(y)
       IMPLICIT none
       real(kind=8), intent(in) :: x
       real(kind=8) :: y
     END FUNCTION funint
  END INTERFACE

CONTAINS
  
  FUNCTION integrate_generic(ibeg, iend, fun, quad) result(val)
    IMPLICIT none
    real(kind=8), intent(in) :: ibeg
    real(kind=8), intent(in) :: iend
    procedure(funint) :: fun
    procedure(quadrature) :: quad
    
    real(kind=8) :: val, subinterval_width, qbeg, qend, partsums(48)
    logical :: partsums_mask(48) = .true.
    real(kind=8), allocatable :: partval[:]
    
    integer(kind=8) :: min_i, max_i, i, j, subintervals_per_thread
    integer(kind=4) :: im

    allocate(partval[*])

    subintervals_per_thread =                               &
         (subintervals + num_images() - 1) / num_images()
    
    min_i = subintervals_per_thread * (this_image() - 1) + 1
    max_i = min(subintervals, subintervals_per_thread * this_image())

    subinterval_width = (iend - ibeg) / subintervals
    
    ! compute integral using quadrature pointed by quad
    partval = 0
    
    DO i = min_i, max_i
       qend = ibeg + i * subinterval_width
       qbeg = ibeg + (i - 1) * subinterval_width
       val = quad(qbeg, qend, fun)

       DO j = 1, 48
          IF (partsums_mask(j)) THEN
             partsums_mask(j) = .false.
             partsums(j) = val
             EXIT
          END IF

          val = val + partsums(j)
          partsums_mask(j) = .true.
       END DO
    END DO

    partval = 0
    DO j = 1, 48
       IF (.not. partsums_mask(j)) partval = partval + partsums(j)
    END DO
    
    IF (this_image() == 1 .and. num_images() > 1) THEN
       sync images([(im, im = 2, num_images())])
       partval = partval + sum([(partval[im], im = 2, num_images())])
       sync images([(im, im = 2, num_images())])
    END IF

    IF (this_image() /= 1) THEN
       sync images(1)
       sync images(1)
    END IF

    val = partval[1]
    
  END FUNCTION integrate_generic

  FUNCTION newton_cotes(ibeg, iend, fun, p) result(val)
    USE, intrinsic :: ieee_arithmetic

    IMPLICIT none
    real(kind=8), intent(in) :: ibeg
    real(kind=8), intent(in) :: iend
    procedure(funint) :: fun
    integer(kind=4), intent(in) :: p
    real(kind=8) :: val
    
    procedure(quadrature), pointer :: quad
    
    SELECT CASE (p)
    CASE (0)
       quad => rectangle
    CASE (1)
       quad => trapeze
    CASE (2)
       quad => simpson_1_third
    CASE default
       val = ieee_value(val, ieee_quiet_nan)
       RETURN
    END SELECT

    val = integrate_generic(ibeg, iend, fun, quad)
  END FUNCTION newton_cotes
  
  FUNCTION rectangle(qbeg, qend, fun) result(val)
    IMPLICIT none
    real(kind=8), intent(in) :: qbeg, qend
    procedure(funint) :: fun
    real(kind=8) :: val

    val = (qend - qbeg) * fun((qend + qbeg) * 0.5)
  END FUNCTION rectangle
  
  FUNCTION trapeze(qbeg, qend, fun) result(val)
    IMPLICIT none
    real(kind=8), intent(in) :: qbeg, qend
    procedure(funint) :: fun
    real(kind=8) :: val

    val = (qend - qbeg) * 0.5 * (fun(qbeg) + fun(qend))
  END FUNCTION trapeze
  
  FUNCTION simpson_1_third(qbeg, qend, fun) result(val)
    IMPLICIT none
    real(kind=8), intent(in) :: qbeg, qend
    procedure(funint) :: fun
    real(kind=8) :: val

    val = (qend - qbeg) * (1/6.0) *                               &
         (fun(qbeg) + 4 * fun ((qbeg + qend) * 0.5) + fun(qend))
  END FUNCTION simpson_1_third

  FUNCTION gauss(ibeg, iend, fun, p) result(val)
    USE, intrinsic :: ieee_arithmetic

    IMPLICIT none
    real(kind=8), intent(in) :: ibeg
    real(kind=8), intent(in) :: iend
    procedure(funint) :: fun
    integer(kind=4), intent(in) :: p
    real(kind=8) :: val
    
    procedure(quadrature), pointer :: quad
    
    SELECT CASE (p)
    CASE (1)
       quad => gauss_n1
    CASE (2)
       quad => gauss_n2
    CASE (3)
       quad => gauss_n3
    CASE default
       val = ieee_value(val, ieee_quiet_nan)
       RETURN
    END SELECT

    val = integrate_generic(ibeg, iend, fun, quad)
  END FUNCTION gauss
  
  FUNCTION gauss_generic(mid, halfwidth, fun, points, weights)    &
       result(val)
    IMPLICIT none
    real(kind=8), intent(in) :: mid, halfwidth, points(:), weights(:)
    procedure(funint) :: fun
    real(kind=8) :: val
    
    integer(kind=4) :: i

    val = halfwidth * sum(weights * &
         [(fun(points(i) * halfwidth + mid), i = 1, size(points))])
  END FUNCTION gauss_generic
  
  FUNCTION gauss_n1(qbeg, qend, fun) result(val)
    IMPLICIT none
    real(kind=8), intent(in) :: qbeg, qend
    procedure(funint) :: fun
    real(kind=8) :: val, weights(1) = [2], points(1) = [0]

    val = gauss_generic((qbeg + qend) * 0.5, (qend - qbeg) * 0.5, &
         fun, points, weights)
  END FUNCTION gauss_n1
  
  FUNCTION gauss_n2(qbeg, qend, fun) result(val)
    IMPLICIT none
    real(kind=8), intent(in) :: qbeg, qend
    procedure(funint) :: fun
    real(kind=8) :: val, weights(2) = [1, 1],                     &
         points(2) = [1 / sqrt(3.0), -1 / sqrt(3.0)]
         
    val = gauss_generic((qbeg + qend) * 0.5, (qend - qbeg) * 0.5, &
         fun, points, weights)
  END FUNCTION gauss_n2
  
  FUNCTION gauss_n3(qbeg, qend, fun) result(val)
    IMPLICIT none
    real(kind=8), intent(in) :: qbeg, qend
    procedure(funint) :: fun
    real(kind=8) :: val, weights(3) = [8 / 9.0, 5 / 9.0, 5 / 9.0],&
         points(3) = [0.0, sqrt(3 / 5.0), -sqrt(3 / 5.0)]

    val = gauss_generic((qbeg + qend) * 0.5, (qend - qbeg) * 0.5, &
         fun, points, weights)
  END FUNCTION gauss_n3

END MODULE quadratures