1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
|
`default_nettype none
module stack_machine
(
input wire ACK_I,
input wire CLK_I,
output reg [19:0] ADR_O,
input wire [15:0] DAT_I,
output reg [15:0] DAT_O,
input wire RST_I,
output reg STB_O,
output reg CYC_O,
output reg WE_O,
input wire STALL_I,
/* non-wishbone */
output wire finished
);
reg [19:0] pc;
reg [19:0] sp;
reg [15:0] instr;
reg [31:0] r0;
reg [31:0] r1;
reg [31:0] im;
parameter STEP_START = 0;
parameter STEP_LOADING_INSTRUCTION = 1;
parameter STEP_PARSING_INSTRUCTION = 2;
parameter STEP_LOAD_OR_STORE = 3;
parameter STEP_PERFORM_OPERATION = 4;
reg [2:0] step;
reg [15:0] DAT_I_latched;
reg [15:0] instruction_latched;
reg instruction_just_received;
wire [15:0] instruction;
assign instruction = instruction_just_received ?
DAT_I_latched : instruction_latched;
/* Results of instruction parsing */
wire shift_immediate; /* only if modify_immediate is true */
assign shift_immediate = instruction[11];
/* only if shift_immediate is true */
wire [10:0] immediate_bits_to_shift;
assign immediate_bits_to_shift = instruction[10:0];
/* only if shift_immediate is false */
wire set_immediate;
assign set_immediate = instruction[10];
/* only if (set_immediate && !shift_immediate) is true */
wire [31:0] immediate_value_to_set;
assign immediate_value_to_set = {{22{instruction[9]}}, instruction[9:0]};
/* only if (!set_immediate && !shift_immediate) is true */
wire add_immediate;
assign add_immediate = instruction[9];
/* only if (add_immediate && !set_immediate && !shift_immediate) is true */
wire [9:0] immediate_value_to_add;
assign immediate_value_to_add = instruction[8:0];
wire [31:0] new_im;
assign new_im = shift_immediate ? {im[20:0], immediate_bits_to_shift} :
set_immediate ? immediate_value_to_set :
add_immediate ? im + immediate_value_to_add : im;
wire shift_regs;
assign shift_regs = instruction[12];
wire load_or_store;
assign load_or_store = instruction[15];
wire [19:0] addr_to_use; /* only if load_or_store is true */
/* The implementation is currently unable to make non-aligned accesses */
assign addr_to_use = new_im / 2 + (immediate_addressing ? 0 : sp);
wire load; /* only if load_or_store is true */
assign load = instruction[14];
wire store; /* only if load_or_store is true */
assign store = !load;
wire immediate_addressing; /* only if load_or_store is true */
assign immediate_addressing = instruction[13];
wire sp_addressing; /* only if load_or_store is true */
assign sp_addressing = !immediate_addressing;
wire load_or_store_r0; /* only if load_or_store is true */
assign load_or_store_r0 = instruction[12];
wire load_or_store_r1; /* only if load_or_store is true */
assign load_or_store_r1 = !load_or_store_r0;
/* only if load_or_store is false */
wire cond_jump;
assign cond_jump = instruction[14:13] == 2'b11;
/* only if load_or_store is false */
wire jump;
assign jump = instruction[14:13] == 2'b10;
/* only if load_or_store is false */
wire exchange_r1_im;
assign exchange_r1_im = instruction[14:13] == 2'b01;
/* only if load_or_store is false */
wire immediate_modification;
assign immediate_modification
= instruction[14:13] == 0 &&
(shift_immediate || set_immediate || add_immediate);
wire extended_instruction; /* only if load_or_store is false */
assign extended_instruction = instruction[14:13] == 0 && ! shift_immediate &&
!set_immediate && !add_immediate;
/* only if (!load_or_store && extended_instruction) is true */
wire [8:0] extended_instruction_bits;
assign extended_instruction_bits = instruction[8:0];
/* extended instructions */
parameter INSTR_TEE = 9'd7;
parameter INSTR_MUL = 9'd6;
parameter INSTR_DIV = 9'd5;
parameter INSTR_SUB = 9'd4;
parameter INSTR_ADD = 9'd3;
parameter INSTR_SET_SP = 9'd2;
parameter INSTR_HALT = 9'd1;
parameter INSTR_NOP = 9'd0;
/* module for division */
wire [31:0] div_quotient;
wire [31:0] div_remainder;
wire div_done;
div
#(
.WIDTH(32)
) div
(
.clock(CLK_I),
.start(step == STEP_PARSING_INSTRUCTION),
.dividend(r0),
.divisor(r1),
.quotient(div_quotient),
.remainder(div_remainder),
.done(div_done)
);
assign finished = !load_or_store && extended_instruction &&
extended_instruction_bits == INSTR_HALT;
reg [15:0] second_word_to_store;
/*
* Variables necessary to know where we are when transferring
* a sequence of words through wishbone
*/
reg first_command_sent;
reg first_ack_received;
/* Informs us, that DAT_I_latched should be moved to r0 or r1 */
reg load_half_of_r0;
reg load_half_of_r1;
`ifdef SIMULATION
/*
* RST should still be used when powering up, even in benches;
* this is just to avoid undefined values
*/
initial begin
ADR_O <= 0;
STB_O <= 0;
CYC_O <= 0;
WE_O <= 0;
r0 <= 0;
r1 <= 0;
im <= 0;
pc <= 0;
sp <= 20'h40000;
step <= STEP_START;
instruction_latched <= 0;
instruction_just_received <= 0;
end
`endif
always @ (posedge CLK_I) begin
DAT_I_latched <= DAT_I;
/*
* Later part of this always block sets them to 1 under certain
* conditions, which takes precedence over this assignment
*/
load_half_of_r0 <= 0;
load_half_of_r1 <= 0;
instruction_just_received <= 0;
if (RST_I) begin
STB_O <= 0;
CYC_O <= 0;
pc <= 0;
sp <= 20'h40000;
step <= STEP_START;
end else begin
case (step)
STEP_START : begin
ADR_O <= pc;
STB_O <= 1;
CYC_O <= 1;
WE_O <= 0;
step <= STEP_LOADING_INSTRUCTION;
pc <= pc + 1;
end
STEP_LOADING_INSTRUCTION : begin
if (!STALL_I)
STB_O <= 0;
if (ACK_I) begin
instruction_just_received <= 1;
step <= STEP_PARSING_INSTRUCTION;
CYC_O <= 0;
end
end // case: STEP_LOADING_INSTRUCTION
STEP_PARSING_INSTRUCTION : begin
im <= new_im;
instruction_latched <= instruction;
first_command_sent <= 0;
first_ack_received <= 0;
if (shift_regs)
{r0, r1} <= {r1, r0}; /* magic! */
if (load_or_store) begin
CYC_O <= 1;
STB_O <= 1;
WE_O <= store;
ADR_O <= addr_to_use;
/* Even if not a store, setting these won't break anything */
DAT_O <= load_or_store_r0 ? r0[15:0] : r1[15:0];
second_word_to_store <= load_or_store_r0 ?
r0[31:16] : r1[31:16];
if (load_or_store_r0)
sp <= sp + (load ? 2 : -2);
step <= STEP_LOAD_OR_STORE;
end else begin // if (load_or_store)
if (immediate_modification) begin
step <= STEP_START;
end else if (exchange_r1_im || extended_instruction) begin
step <= STEP_PERFORM_OPERATION;
end else if (jump) begin
pc <= new_im / 2;
step <= STEP_START;
end else if (cond_jump) begin
if (r1 != 0)
pc <= new_im / 2;
step <= STEP_START;
end else begin
`ifdef SIMULATION
$display("operation not implemented yet");
`endif
step <= STEP_START;
end
end // else: !if(load_or_store)
end // case: STEP_PARSING_INSTRUCTION
STEP_LOAD_OR_STORE : begin
if (!STALL_I) begin
ADR_O <= ADR_O + 1;
DAT_O <= second_word_to_store;
if (!first_command_sent)
first_command_sent <= 1;
else
STB_O <= 0;
end // if (!STALL_I)
if (ACK_I) begin
if (load) begin
if (load_or_store_r0)
load_half_of_r0 <= 1;
else
load_half_of_r1 <= 1;
end
if (!first_ack_received)
first_ack_received <= 1;
else
step <= STEP_START;
end // if (ACK_I)
end // case: STEP_LOAD_OR_STORE
STEP_PERFORM_OPERATION : begin
step <= STEP_START; /* unless overwritten in case block below */
if (extended_instruction) begin
case (extended_instruction_bits)
INSTR_NOP :
;
INSTR_HALT :
step <= step; /* stay in this step forever */
INSTR_SET_SP :
sp <= im / 2;
INSTR_ADD :
r0 <= r0 + r1;
INSTR_SUB :
r0 <= r0 - r1;
INSTR_DIV : begin
{r0, r1} <= {div_quotient, div_remainder};
if (!div_done)
step <= step;
end
INSTR_MUL :
r0 <= r0 * r1;
INSTR_TEE :
r1 <= r0;
default : begin
`ifdef SIMULATION
$display("operation not implemented yet");
`endif
end
endcase // case (extended_instruction_bits)
end else if (exchange_r1_im) begin
{r1, im} <= {im, r1};
end else begin
`ifdef SIMULATION
$display("operation not implemented yet");
`endif
end
end // case: STEP_PERFORM_OPERATION
endcase // case (step)
end // else: !if(RST_I)
if (load_half_of_r0)
r0 <= {DAT_I_latched, r0[31:16]};
if (load_half_of_r1)
r1 <= {DAT_I_latched, r1[31:16]};
end // always @ (posedge CLK_I)
endmodule // stack_machine
|