1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
|
`default_nettype none
`define ADDR_WIDTH ($clog2(MEMORY_BLOCKS + 1) + 8)
module spi_slave
#(
parameter MEMORY_BLOCKS = 1 /* 1 block stores 256 16-bit words */
)
(
/* Interface to flash memory chip */
output reg sdo,
input wire sdi,
output wire sck,
output reg ss_n,
/* Wishbone slave interface */
output wire ACK_O,
input wire [`ADDR_WIDTH - 1:0] ADR_I,
input wire CLK_I,
input wire [15:0] DAT_I,
output wire [15:0] DAT_O,
input wire RST_I,
input wire STB_I,
input wire WE_I,
output wire STALL_O
);
parameter MEMORY_IDX_WIDTH = $clog2(MEMORY_BLOCKS) + 8;
parameter MEMORY_MAX_ADDR = MEMORY_BLOCKS * 256 - 1;
parameter BIT_COUNT_WIDTH = MEMORY_IDX_WIDTH + 4;
reg [15:0] memory [MEMORY_MAX_ADDR:0];
reg [15:0] data_read_from_memory;
reg [15:0] data_read_from_regs;
wire [15:0] data_to_write_to_memory;
reg [`ADDR_WIDTH - 1:0] ADR_I_latched;
reg [15:0] DAT_I_latched;
reg [1:0] wb_read_memory;
reg wb_write_memory;
reg wb_read_regs;
reg wb_write_regs;
/*
* The wires below are only relevant if regs are being accessed, i.e.
* ADR_I_latched > MEMORY_MAX_ADDR.
*/
wire reg_bytes_to_output;
wire reg_bytes_to_receive;
wire reg_operating;
assign reg_bytes_to_output = ADR_I_latched[1:0] == 2'b00;
assign reg_bytes_to_receive = ADR_I_latched[1:0] == 2'b01;
assign reg_operating = ADR_I_latched[1] == 1'b1;
reg ack;
reg [2:0] operating;
wire [1:0] start_operating;
assign start_operating = {operating[2:1] == 2'b01, operating[1:0] == 2'b01};
reg [15:0] out_data; // sdo data
reg [15:0] in_data; // sdi data
reg bytes_to_output_odd;
reg bytes_to_receive_odd;
reg [BIT_COUNT_WIDTH - 1:0] bits_to_output;
reg [BIT_COUNT_WIDTH - 1:0] bits_to_receive;
reg [MEMORY_IDX_WIDTH - 1:0] memory_idx;
reg [1:0] spi_read_memory;
reg spi_write_memory;
wire spi_write_1byte;
wire initial_spi_read_memory;
assign spi_write_1byte = bits_to_receive[3] == 0 && bytes_to_receive_odd;
assign initial_spi_read_memory = start_operating[0];
wire [MEMORY_IDX_WIDTH - 1:0] memory_read_idx;
wire [MEMORY_IDX_WIDTH - 1:0] memory_write_idx;
assign memory_read_idx = initial_spi_read_memory ? 0 :
spi_read_memory[0] ? memory_idx :
ADR_I_latched;
assign memory_write_idx = spi_write_memory ? memory_idx :
ADR_I_latched;
assign data_to_write_to_memory = spi_write_memory ?
(spi_write_1byte ?
{8'hXX, in_data[7:0]} :
{in_data[7:0], in_data[15:8]}) :
DAT_I_latched;
wire wb_reg_can_be_written;
assign wb_reg_can_be_written = !operating[0];
wire wb_mread_completes;
wire wb_rread_completes;
wire wb_mwrite_completes;
wire wb_rwrite_completes;
assign wb_mread_completes = !(spi_read_memory[0] || initial_spi_read_memory) &&
wb_read_memory[0];
assign wb_rread_completes = wb_read_regs; /* can always read immediately */
assign wb_mwrite_completes = !spi_write_memory && wb_write_memory;
assign wb_rwrite_completes = wb_reg_can_be_written && wb_write_regs;
wire wb_operation_accepted;
wire wb_operation_pending;
wire wb_operation_completes;
assign wb_operation_accepted = !STALL_O && STB_I;
assign wb_operation_pending = wb_read_memory || wb_read_regs ||
wb_write_memory || wb_write_regs;
assign wb_operation_completes = wb_mread_completes || wb_rread_completes ||
wb_mwrite_completes || wb_rwrite_completes;
assign DAT_O = wb_read_memory[1] ? data_read_from_memory :
data_read_from_regs;
assign ACK_O = ack;
assign STALL_O = wb_operation_pending && !wb_operation_completes;
parameter state_sending = 0;
parameter state_receiving = 1;
reg state;
assign sck = CLK_I;
always @ (posedge CLK_I) begin
operating[2:1] <= operating[1:0];
data_read_from_memory <= memory[memory_read_idx];
if (spi_write_memory || wb_write_memory)
memory[memory_write_idx] <= data_to_write_to_memory;
spi_read_memory[1] <= spi_read_memory[0] || initial_spi_read_memory;
if (operating[0]) begin
spi_read_memory[0] <= bits_to_output[BIT_COUNT_WIDTH - 1:4] != 0 &&
bits_to_output[3:0] ==
(bytes_to_output_odd ? 11 : 3);
spi_write_memory <= bits_to_receive == 1 ||
bits_to_receive[3:0] ==
(bytes_to_receive_odd ? 9 : 1);
end else begin
spi_read_memory[0] <= 0;
spi_write_memory <= 0;
end
out_data <= spi_read_memory[1] ?
{data_read_from_memory[7:0], data_read_from_memory[15:8]} :
{out_data[14:0], 1'bx};
in_data <= {in_data[14:0], sdi};
wb_read_memory[1] <= wb_read_memory[0];
if (reg_bytes_to_output)
data_read_from_regs <= bits_to_output[BIT_COUNT_WIDTH - 1:3];
else if (reg_bytes_to_receive)
data_read_from_regs <= bits_to_receive[BIT_COUNT_WIDTH - 1:3];
else if (reg_operating)
data_read_from_regs <= {16{operating[0]}};
else
data_read_from_regs <= 16'hXXXX;
if (wb_write_regs && wb_reg_can_be_written) begin
if (reg_bytes_to_output) begin
bits_to_output <= DAT_I_latched << 3;
bytes_to_output_odd <= DAT_I_latched[0];
end
if (reg_bytes_to_receive) begin
bits_to_receive <= (DAT_I_latched << 3);
bytes_to_receive_odd <= DAT_I_latched[0];
end
if (reg_operating)
operating[0] <= 1; /* might be overwritten below */
end
if (RST_I) begin
wb_read_memory[0] <= 0;
wb_write_memory <= 0;
wb_read_regs <= 0;
wb_write_regs <= 0;
operating[0] <= 0;
bits_to_receive <= 16'hXXXX;
bits_to_output <= 16'hXXXX;//{{(BIT_COUNT_WIDTH - 4){1'bx}}, 4'h0};
bytes_to_output_odd <= 1'bx;
bytes_to_receive_odd <= 1'bx;
ack <= 0;
end else begin // if (RST_I)
if (wb_operation_accepted) begin
ADR_I_latched <= ADR_I;
DAT_I_latched <= DAT_I;
wb_read_memory[0] <= !WE_I && ADR_I <= MEMORY_MAX_ADDR;
wb_write_memory <= WE_I && ADR_I <= MEMORY_MAX_ADDR;
wb_read_regs <= !WE_I && ADR_I > MEMORY_MAX_ADDR;
wb_write_regs <= WE_I && ADR_I > MEMORY_MAX_ADDR;
end else if (wb_operation_completes) begin
wb_read_memory[0] <= 0;
wb_write_memory <= 0;
wb_read_regs <= 0;
wb_write_regs <= 0;
end
ack <= wb_operation_completes;
end // else: !if(RST_I)
if (start_operating[1]) begin
memory_idx <= 1;
state <= state_sending;
end
if (operating == 3'b111) begin
if (state == state_sending) begin
bits_to_output <= bits_to_output - 1;
if (spi_read_memory[0])
memory_idx <= memory_idx + 1;
if (bits_to_output - 1 == 0) begin
state <= state_receiving;
memory_idx <= 0;
if (bits_to_receive == 0)
operating[0] <= 0;
end
end else if (state == state_receiving) begin
bits_to_receive <= bits_to_receive - 1;
if (spi_write_memory)
memory_idx <= memory_idx + 1;
if (bits_to_receive - 1 == 0)
operating[0] <= 0;
end
end // if (operating[2])
end // always @ (posedge CLK_I)
always @ (negedge CLK_I) begin
sdo <= out_data[15];
ss_n <= !(operating == 3'b111);
end
`ifdef SIMULATION
initial begin
operating[0] <= 0;
ss_n <= 1;
end
`endif
endmodule // spi_slave
|