aboutsummaryrefslogtreecommitdiff
path: root/openssl-1.1.0h/test/secmemtest.c
blob: 9405f348abc5c11fb6aa314851248f43e57b47ca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
/*
 * Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

#include <stdio.h>
#include <openssl/crypto.h>

#define perror_line()    perror_line1(__LINE__)
#define perror_line1(l)  perror_line2(l)
#define perror_line2(l)  perror("failed " #l)

int main(int argc, char **argv)
{
#if defined(OPENSSL_SYS_LINUX) || defined(OPENSSL_SYS_UNIX)
    char *p = NULL, *q = NULL, *r = NULL, *s = NULL;

    s = OPENSSL_secure_malloc(20);
    /* s = non-secure 20 */
    if (s == NULL) {
        perror_line();
        return 1;
    }
    if (CRYPTO_secure_allocated(s)) {
        perror_line();
        return 1;
    }
    r = OPENSSL_secure_malloc(20);
    /* r = non-secure 20, s = non-secure 20 */
    if (r == NULL) {
        perror_line();
        return 1;
    }
    if (!CRYPTO_secure_malloc_init(4096, 32)) {
        perror_line();
        return 1;
    }
    if (CRYPTO_secure_allocated(r)) {
        perror_line();
        return 1;
    }
    p = OPENSSL_secure_malloc(20);
    /* r = non-secure 20, p = secure 20, s = non-secure 20 */
    if (!CRYPTO_secure_allocated(p)) {
        perror_line();
        return 1;
    }
    /* 20 secure -> 32-byte minimum allocaton unit */
    if (CRYPTO_secure_used() != 32) {
        perror_line();
        return 1;
    }
    q = OPENSSL_malloc(20);
    /* r = non-secure 20, p = secure 20, q = non-secure 20, s = non-secure 20 */
    if (CRYPTO_secure_allocated(q)) {
        perror_line();
        return 1;
    }
    OPENSSL_secure_clear_free(s, 20);
    s = OPENSSL_secure_malloc(20);
    /* r = non-secure 20, p = secure 20, q = non-secure 20, s = secure 20 */
    if (!CRYPTO_secure_allocated(s)) {
        perror_line();
        return 1;
    }
    /* 2 * 20 secure -> 64 bytes allocated */
    if (CRYPTO_secure_used() != 64) {
        perror_line();
        return 1;
    }
    OPENSSL_secure_clear_free(p, 20);
    /* 20 secure -> 32 bytes allocated */
    if (CRYPTO_secure_used() != 32) {
        perror_line();
        return 1;
    }
    OPENSSL_free(q);
    /* should not complete, as secure memory is still allocated */
    if (CRYPTO_secure_malloc_done()) {
        perror_line();
        return 1;
    }
    if (!CRYPTO_secure_malloc_initialized()) {
        perror_line();
        return 1;
    }
    OPENSSL_secure_free(s);
    /* secure memory should now be 0, so done should complete */
    if (CRYPTO_secure_used() != 0) {
        perror_line();
        return 1;
    }
    if (!CRYPTO_secure_malloc_done()) {
        perror_line();
        return 1;
    }
    if (CRYPTO_secure_malloc_initialized()) {
        perror_line();
        return 1;
    }

    fprintf(stderr, "Possible infinite loop: allocate more than available\n");
    if (!CRYPTO_secure_malloc_init(32768, 16)) {
        perror_line();
        return 1;
    }
    if (OPENSSL_secure_malloc((size_t)-1) != NULL) {
        perror_line();
        return 1;
    }
    if (!CRYPTO_secure_malloc_done()) {
        perror_line();
        return 1;
    }

    /*
     * If init fails, then initialized should be false, if not, this
     * could cause an infinite loop secure_malloc, but we don't test it
     */
    if (!CRYPTO_secure_malloc_init(16, 16) &&
        CRYPTO_secure_malloc_initialized()) {
        CRYPTO_secure_malloc_done();
        perror_line();
        return 1;
    }

    /*-
     * There was also a possible infinite loop when the number of
     * elements was 1<<31, as |int i| was set to that, which is a
     * negative number. However, it requires minimum input values:
     *
     * CRYPTO_secure_malloc_init((size_t)1<<34, (size_t)1<<4);
     *
     * Which really only works on 64-bit systems, since it took 16 GB
     * secure memory arena to trigger the problem. It naturally takes
     * corresponding amount of available virtual and physical memory
     * for test to be feasible/representative. Since we can't assume
     * that every system is equipped with that much memory, the test
     * remains disabled. If the reader of this comment really wants
     * to make sure that infinite loop is fixed, they can enable the
     * code below.
     */
# if 0
    /*-
     * On Linux and BSD this test has a chance to complete in minimal
     * time and with minimum side effects, because mlock is likely to
     * fail because of RLIMIT_MEMLOCK, which is customarily [much]
     * smaller than 16GB. In other words Linux and BSD users can be
     * limited by virtual space alone...
     */
    if (sizeof(size_t) > 4) {
        fprintf(stderr, "Possible infinite loop: 1<<31 limit\n");
        if (CRYPTO_secure_malloc_init((size_t)1<<34, (size_t)1<<4) == 0) {
            perror_line();
        } else if (!CRYPTO_secure_malloc_done()) {
            perror_line();
            return 1;
        }
    }
# endif

    /* this can complete - it was not really secure */
    OPENSSL_secure_free(r);
#else
    /* Should fail. */
    if (CRYPTO_secure_malloc_init(4096, 32)) {
        perror_line();
        return 1;
    }
#endif
    return 0;
}