aboutsummaryrefslogtreecommitdiff
path: root/openssl-1.1.0h/ssl/s3_cbc.c
blob: 9a228f7de27cd76295efad8d05e94eaf958fe5df (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
/*
 * Copyright 2012-2016 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

#include "internal/constant_time_locl.h"
#include "ssl_locl.h"

#include <openssl/md5.h>
#include <openssl/sha.h>

/*
 * MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's
 * length field. (SHA-384/512 have 128-bit length.)
 */
#define MAX_HASH_BIT_COUNT_BYTES 16

/*
 * MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
 * Currently SHA-384/512 has a 128-byte block size and that's the largest
 * supported by TLS.)
 */
#define MAX_HASH_BLOCK_SIZE 128

/*
 * u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
 * little-endian order. The value of p is advanced by four.
 */
#define u32toLE(n, p) \
        (*((p)++)=(unsigned char)(n), \
         *((p)++)=(unsigned char)(n>>8), \
         *((p)++)=(unsigned char)(n>>16), \
         *((p)++)=(unsigned char)(n>>24))

/*
 * These functions serialize the state of a hash and thus perform the
 * standard "final" operation without adding the padding and length that such
 * a function typically does.
 */
static void tls1_md5_final_raw(void *ctx, unsigned char *md_out)
{
    MD5_CTX *md5 = ctx;
    u32toLE(md5->A, md_out);
    u32toLE(md5->B, md_out);
    u32toLE(md5->C, md_out);
    u32toLE(md5->D, md_out);
}

static void tls1_sha1_final_raw(void *ctx, unsigned char *md_out)
{
    SHA_CTX *sha1 = ctx;
    l2n(sha1->h0, md_out);
    l2n(sha1->h1, md_out);
    l2n(sha1->h2, md_out);
    l2n(sha1->h3, md_out);
    l2n(sha1->h4, md_out);
}

static void tls1_sha256_final_raw(void *ctx, unsigned char *md_out)
{
    SHA256_CTX *sha256 = ctx;
    unsigned i;

    for (i = 0; i < 8; i++) {
        l2n(sha256->h[i], md_out);
    }
}

static void tls1_sha512_final_raw(void *ctx, unsigned char *md_out)
{
    SHA512_CTX *sha512 = ctx;
    unsigned i;

    for (i = 0; i < 8; i++) {
        l2n8(sha512->h[i], md_out);
    }
}

#undef  LARGEST_DIGEST_CTX
#define LARGEST_DIGEST_CTX SHA512_CTX

/*
 * ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function
 * which ssl3_cbc_digest_record supports.
 */
char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
{
    if (FIPS_mode())
        return 0;
    switch (EVP_MD_CTX_type(ctx)) {
    case NID_md5:
    case NID_sha1:
    case NID_sha224:
    case NID_sha256:
    case NID_sha384:
    case NID_sha512:
        return 1;
    default:
        return 0;
    }
}

/*-
 * ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS
 * record.
 *
 *   ctx: the EVP_MD_CTX from which we take the hash function.
 *     ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
 *   md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
 *   md_out_size: if non-NULL, the number of output bytes is written here.
 *   header: the 13-byte, TLS record header.
 *   data: the record data itself, less any preceding explicit IV.
 *   data_plus_mac_size: the secret, reported length of the data and MAC
 *     once the padding has been removed.
 *   data_plus_mac_plus_padding_size: the public length of the whole
 *     record, including padding.
 *   is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS.
 *
 * On entry: by virtue of having been through one of the remove_padding
 * functions, above, we know that data_plus_mac_size is large enough to contain
 * a padding byte and MAC. (If the padding was invalid, it might contain the
 * padding too. )
 * Returns 1 on success or 0 on error
 */
int ssl3_cbc_digest_record(const EVP_MD_CTX *ctx,
                           unsigned char *md_out,
                           size_t *md_out_size,
                           const unsigned char header[13],
                           const unsigned char *data,
                           size_t data_plus_mac_size,
                           size_t data_plus_mac_plus_padding_size,
                           const unsigned char *mac_secret,
                           unsigned mac_secret_length, char is_sslv3)
{
    union {
        double align;
        unsigned char c[sizeof(LARGEST_DIGEST_CTX)];
    } md_state;
    void (*md_final_raw) (void *ctx, unsigned char *md_out);
    void (*md_transform) (void *ctx, const unsigned char *block);
    unsigned md_size, md_block_size = 64;
    unsigned sslv3_pad_length = 40, header_length, variance_blocks,
        len, max_mac_bytes, num_blocks,
        num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
    unsigned int bits;          /* at most 18 bits */
    unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
    /* hmac_pad is the masked HMAC key. */
    unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
    unsigned char first_block[MAX_HASH_BLOCK_SIZE];
    unsigned char mac_out[EVP_MAX_MD_SIZE];
    unsigned i, j, md_out_size_u;
    EVP_MD_CTX *md_ctx = NULL;
    /*
     * mdLengthSize is the number of bytes in the length field that
     * terminates * the hash.
     */
    unsigned md_length_size = 8;
    char length_is_big_endian = 1;
    int ret;

    /*
     * This is a, hopefully redundant, check that allows us to forget about
     * many possible overflows later in this function.
     */
    OPENSSL_assert(data_plus_mac_plus_padding_size < 1024 * 1024);

    switch (EVP_MD_CTX_type(ctx)) {
    case NID_md5:
        if (MD5_Init((MD5_CTX *)md_state.c) <= 0)
            return 0;
        md_final_raw = tls1_md5_final_raw;
        md_transform =
            (void (*)(void *ctx, const unsigned char *block))MD5_Transform;
        md_size = 16;
        sslv3_pad_length = 48;
        length_is_big_endian = 0;
        break;
    case NID_sha1:
        if (SHA1_Init((SHA_CTX *)md_state.c) <= 0)
            return 0;
        md_final_raw = tls1_sha1_final_raw;
        md_transform =
            (void (*)(void *ctx, const unsigned char *block))SHA1_Transform;
        md_size = 20;
        break;
    case NID_sha224:
        if (SHA224_Init((SHA256_CTX *)md_state.c) <= 0)
            return 0;
        md_final_raw = tls1_sha256_final_raw;
        md_transform =
            (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
        md_size = 224 / 8;
        break;
    case NID_sha256:
        if (SHA256_Init((SHA256_CTX *)md_state.c) <= 0)
            return 0;
        md_final_raw = tls1_sha256_final_raw;
        md_transform =
            (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
        md_size = 32;
        break;
    case NID_sha384:
        if (SHA384_Init((SHA512_CTX *)md_state.c) <= 0)
            return 0;
        md_final_raw = tls1_sha512_final_raw;
        md_transform =
            (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
        md_size = 384 / 8;
        md_block_size = 128;
        md_length_size = 16;
        break;
    case NID_sha512:
        if (SHA512_Init((SHA512_CTX *)md_state.c) <= 0)
            return 0;
        md_final_raw = tls1_sha512_final_raw;
        md_transform =
            (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
        md_size = 64;
        md_block_size = 128;
        md_length_size = 16;
        break;
    default:
        /*
         * ssl3_cbc_record_digest_supported should have been called first to
         * check that the hash function is supported.
         */
        OPENSSL_assert(0);
        if (md_out_size)
            *md_out_size = 0;
        return 0;
    }

    OPENSSL_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES);
    OPENSSL_assert(md_block_size <= MAX_HASH_BLOCK_SIZE);
    OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);

    header_length = 13;
    if (is_sslv3) {
        header_length = mac_secret_length + sslv3_pad_length + 8 /* sequence
                                                                  * number */  +
            1 /* record type */  +
            2 /* record length */ ;
    }

    /*
     * variance_blocks is the number of blocks of the hash that we have to
     * calculate in constant time because they could be altered by the
     * padding value. In SSLv3, the padding must be minimal so the end of
     * the plaintext varies by, at most, 15+20 = 35 bytes. (We conservatively
     * assume that the MAC size varies from 0..20 bytes.) In case the 9 bytes
     * of hash termination (0x80 + 64-bit length) don't fit in the final
     * block, we say that the final two blocks can vary based on the padding.
     * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
     * required to be minimal. Therefore we say that the final six blocks can
     * vary based on the padding. Later in the function, if the message is
     * short and there obviously cannot be this many blocks then
     * variance_blocks can be reduced.
     */
    variance_blocks = is_sslv3 ? 2 : 6;
    /*
     * From now on we're dealing with the MAC, which conceptually has 13
     * bytes of `header' before the start of the data (TLS) or 71/75 bytes
     * (SSLv3)
     */
    len = data_plus_mac_plus_padding_size + header_length;
    /*
     * max_mac_bytes contains the maximum bytes of bytes in the MAC,
     * including * |header|, assuming that there's no padding.
     */
    max_mac_bytes = len - md_size - 1;
    /* num_blocks is the maximum number of hash blocks. */
    num_blocks =
        (max_mac_bytes + 1 + md_length_size + md_block_size -
         1) / md_block_size;
    /*
     * In order to calculate the MAC in constant time we have to handle the
     * final blocks specially because the padding value could cause the end
     * to appear somewhere in the final |variance_blocks| blocks and we can't
     * leak where. However, |num_starting_blocks| worth of data can be hashed
     * right away because no padding value can affect whether they are
     * plaintext.
     */
    num_starting_blocks = 0;
    /*
     * k is the starting byte offset into the conceptual header||data where
     * we start processing.
     */
    k = 0;
    /*
     * mac_end_offset is the index just past the end of the data to be MACed.
     */
    mac_end_offset = data_plus_mac_size + header_length - md_size;
    /*
     * c is the index of the 0x80 byte in the final hash block that contains
     * application data.
     */
    c = mac_end_offset % md_block_size;
    /*
     * index_a is the hash block number that contains the 0x80 terminating
     * value.
     */
    index_a = mac_end_offset / md_block_size;
    /*
     * index_b is the hash block number that contains the 64-bit hash length,
     * in bits.
     */
    index_b = (mac_end_offset + md_length_size) / md_block_size;
    /*
     * bits is the hash-length in bits. It includes the additional hash block
     * for the masked HMAC key, or whole of |header| in the case of SSLv3.
     */

    /*
     * For SSLv3, if we're going to have any starting blocks then we need at
     * least two because the header is larger than a single block.
     */
    if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0)) {
        num_starting_blocks = num_blocks - variance_blocks;
        k = md_block_size * num_starting_blocks;
    }

    bits = 8 * mac_end_offset;
    if (!is_sslv3) {
        /*
         * Compute the initial HMAC block. For SSLv3, the padding and secret
         * bytes are included in |header| because they take more than a
         * single block.
         */
        bits += 8 * md_block_size;
        memset(hmac_pad, 0, md_block_size);
        OPENSSL_assert(mac_secret_length <= sizeof(hmac_pad));
        memcpy(hmac_pad, mac_secret, mac_secret_length);
        for (i = 0; i < md_block_size; i++)
            hmac_pad[i] ^= 0x36;

        md_transform(md_state.c, hmac_pad);
    }

    if (length_is_big_endian) {
        memset(length_bytes, 0, md_length_size - 4);
        length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24);
        length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16);
        length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8);
        length_bytes[md_length_size - 1] = (unsigned char)bits;
    } else {
        memset(length_bytes, 0, md_length_size);
        length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24);
        length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16);
        length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8);
        length_bytes[md_length_size - 8] = (unsigned char)bits;
    }

    if (k > 0) {
        if (is_sslv3) {
            unsigned overhang;

            /*
             * The SSLv3 header is larger than a single block. overhang is
             * the number of bytes beyond a single block that the header
             * consumes: either 7 bytes (SHA1) or 11 bytes (MD5). There are no
             * ciphersuites in SSLv3 that are not SHA1 or MD5 based and
             * therefore we can be confident that the header_length will be
             * greater than |md_block_size|. However we add a sanity check just
             * in case
             */
            if (header_length <= md_block_size) {
                /* Should never happen */
                return 0;
            }
            overhang = header_length - md_block_size;
            md_transform(md_state.c, header);
            memcpy(first_block, header + md_block_size, overhang);
            memcpy(first_block + overhang, data, md_block_size - overhang);
            md_transform(md_state.c, first_block);
            for (i = 1; i < k / md_block_size - 1; i++)
                md_transform(md_state.c, data + md_block_size * i - overhang);
        } else {
            /* k is a multiple of md_block_size. */
            memcpy(first_block, header, 13);
            memcpy(first_block + 13, data, md_block_size - 13);
            md_transform(md_state.c, first_block);
            for (i = 1; i < k / md_block_size; i++)
                md_transform(md_state.c, data + md_block_size * i - 13);
        }
    }

    memset(mac_out, 0, sizeof(mac_out));

    /*
     * We now process the final hash blocks. For each block, we construct it
     * in constant time. If the |i==index_a| then we'll include the 0x80
     * bytes and zero pad etc. For each block we selectively copy it, in
     * constant time, to |mac_out|.
     */
    for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks;
         i++) {
        unsigned char block[MAX_HASH_BLOCK_SIZE];
        unsigned char is_block_a = constant_time_eq_8(i, index_a);
        unsigned char is_block_b = constant_time_eq_8(i, index_b);
        for (j = 0; j < md_block_size; j++) {
            unsigned char b = 0, is_past_c, is_past_cp1;
            if (k < header_length)
                b = header[k];
            else if (k < data_plus_mac_plus_padding_size + header_length)
                b = data[k - header_length];
            k++;

            is_past_c = is_block_a & constant_time_ge_8(j, c);
            is_past_cp1 = is_block_a & constant_time_ge_8(j, c + 1);
            /*
             * If this is the block containing the end of the application
             * data, and we are at the offset for the 0x80 value, then
             * overwrite b with 0x80.
             */
            b = constant_time_select_8(is_past_c, 0x80, b);
            /*
             * If this the the block containing the end of the application
             * data and we're past the 0x80 value then just write zero.
             */
            b = b & ~is_past_cp1;
            /*
             * If this is index_b (the final block), but not index_a (the end
             * of the data), then the 64-bit length didn't fit into index_a
             * and we're having to add an extra block of zeros.
             */
            b &= ~is_block_b | is_block_a;

            /*
             * The final bytes of one of the blocks contains the length.
             */
            if (j >= md_block_size - md_length_size) {
                /* If this is index_b, write a length byte. */
                b = constant_time_select_8(is_block_b,
                                           length_bytes[j -
                                                        (md_block_size -
                                                         md_length_size)], b);
            }
            block[j] = b;
        }

        md_transform(md_state.c, block);
        md_final_raw(md_state.c, block);
        /* If this is index_b, copy the hash value to |mac_out|. */
        for (j = 0; j < md_size; j++)
            mac_out[j] |= block[j] & is_block_b;
    }

    md_ctx = EVP_MD_CTX_new();
    if (md_ctx == NULL)
        goto err;
    if (EVP_DigestInit_ex(md_ctx, EVP_MD_CTX_md(ctx), NULL /* engine */ ) <= 0)
        goto err;
    if (is_sslv3) {
        /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */
        memset(hmac_pad, 0x5c, sslv3_pad_length);

        if (EVP_DigestUpdate(md_ctx, mac_secret, mac_secret_length) <= 0
            || EVP_DigestUpdate(md_ctx, hmac_pad, sslv3_pad_length) <= 0
            || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0)
            goto err;
    } else {
        /* Complete the HMAC in the standard manner. */
        for (i = 0; i < md_block_size; i++)
            hmac_pad[i] ^= 0x6a;

        if (EVP_DigestUpdate(md_ctx, hmac_pad, md_block_size) <= 0
            || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0)
            goto err;
    }
    ret = EVP_DigestFinal(md_ctx, md_out, &md_out_size_u);
    if (ret && md_out_size)
        *md_out_size = md_out_size_u;
    EVP_MD_CTX_free(md_ctx);

    return 1;
 err:
    EVP_MD_CTX_free(md_ctx);
    return 0;
}

/*
 * Due to the need to use EVP in FIPS mode we can't reimplement digests but
 * we can ensure the number of blocks processed is equal for all cases by
 * digesting additional data.
 */

int tls_fips_digest_extra(const EVP_CIPHER_CTX *cipher_ctx,
                          EVP_MD_CTX *mac_ctx, const unsigned char *data,
                          size_t data_len, size_t orig_len)
{
    size_t block_size, digest_pad, blocks_data, blocks_orig;
    if (EVP_CIPHER_CTX_mode(cipher_ctx) != EVP_CIPH_CBC_MODE)
        return 1;
    block_size = EVP_MD_CTX_block_size(mac_ctx);
    /*-
     * We are in FIPS mode if we get this far so we know we have only SHA*
     * digests and TLS to deal with.
     * Minimum digest padding length is 17 for SHA384/SHA512 and 9
     * otherwise.
     * Additional header is 13 bytes. To get the number of digest blocks
     * processed round up the amount of data plus padding to the nearest
     * block length. Block length is 128 for SHA384/SHA512 and 64 otherwise.
     * So we have:
     * blocks = (payload_len + digest_pad + 13 + block_size - 1)/block_size
     * equivalently:
     * blocks = (payload_len + digest_pad + 12)/block_size + 1
     * HMAC adds a constant overhead.
     * We're ultimately only interested in differences so this becomes
     * blocks = (payload_len + 29)/128
     * for SHA384/SHA512 and
     * blocks = (payload_len + 21)/64
     * otherwise.
     */
    digest_pad = block_size == 64 ? 21 : 29;
    blocks_orig = (orig_len + digest_pad) / block_size;
    blocks_data = (data_len + digest_pad) / block_size;
    /*
     * MAC enough blocks to make up the difference between the original and
     * actual lengths plus one extra block to ensure this is never a no op.
     * The "data" pointer should always have enough space to perform this
     * operation as it is large enough for a maximum length TLS buffer.
     */
    return EVP_DigestSignUpdate(mac_ctx, data,
                                (blocks_orig - blocks_data + 1) * block_size);
}