aboutsummaryrefslogtreecommitdiff
path: root/openssl-1.1.0h/crypto/sha/sha512.c
blob: e94de4370b61c93801214ea54ec68b2c5ffdd97c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
/*
 * Copyright 2004-2016 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

#include <openssl/opensslconf.h>
/*-
 * IMPLEMENTATION NOTES.
 *
 * As you might have noticed 32-bit hash algorithms:
 *
 * - permit SHA_LONG to be wider than 32-bit
 * - optimized versions implement two transform functions: one operating
 *   on [aligned] data in host byte order and one - on data in input
 *   stream byte order;
 * - share common byte-order neutral collector and padding function
 *   implementations, ../md32_common.h;
 *
 * Neither of the above applies to this SHA-512 implementations. Reasons
 * [in reverse order] are:
 *
 * - it's the only 64-bit hash algorithm for the moment of this writing,
 *   there is no need for common collector/padding implementation [yet];
 * - by supporting only one transform function [which operates on
 *   *aligned* data in input stream byte order, big-endian in this case]
 *   we minimize burden of maintenance in two ways: a) collector/padding
 *   function is simpler; b) only one transform function to stare at;
 * - SHA_LONG64 is required to be exactly 64-bit in order to be able to
 *   apply a number of optimizations to mitigate potential performance
 *   penalties caused by previous design decision;
 *
 * Caveat lector.
 *
 * Implementation relies on the fact that "long long" is 64-bit on
 * both 32- and 64-bit platforms. If some compiler vendor comes up
 * with 128-bit long long, adjustment to sha.h would be required.
 * As this implementation relies on 64-bit integer type, it's totally
 * inappropriate for platforms which don't support it, most notably
 * 16-bit platforms.
 *                                      <appro@fy.chalmers.se>
 */
#include <stdlib.h>
#include <string.h>

#include <openssl/crypto.h>
#include <openssl/sha.h>
#include <openssl/opensslv.h>

#include "internal/cryptlib.h"

#if defined(__i386) || defined(__i386__) || defined(_M_IX86) || \
    defined(__x86_64) || defined(_M_AMD64) || defined(_M_X64) || \
    defined(__s390__) || defined(__s390x__) || \
    defined(__aarch64__) || \
    defined(SHA512_ASM)
# define SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
#endif

int SHA384_Init(SHA512_CTX *c)
{
    c->h[0] = U64(0xcbbb9d5dc1059ed8);
    c->h[1] = U64(0x629a292a367cd507);
    c->h[2] = U64(0x9159015a3070dd17);
    c->h[3] = U64(0x152fecd8f70e5939);
    c->h[4] = U64(0x67332667ffc00b31);
    c->h[5] = U64(0x8eb44a8768581511);
    c->h[6] = U64(0xdb0c2e0d64f98fa7);
    c->h[7] = U64(0x47b5481dbefa4fa4);

    c->Nl = 0;
    c->Nh = 0;
    c->num = 0;
    c->md_len = SHA384_DIGEST_LENGTH;
    return 1;
}

int SHA512_Init(SHA512_CTX *c)
{
    c->h[0] = U64(0x6a09e667f3bcc908);
    c->h[1] = U64(0xbb67ae8584caa73b);
    c->h[2] = U64(0x3c6ef372fe94f82b);
    c->h[3] = U64(0xa54ff53a5f1d36f1);
    c->h[4] = U64(0x510e527fade682d1);
    c->h[5] = U64(0x9b05688c2b3e6c1f);
    c->h[6] = U64(0x1f83d9abfb41bd6b);
    c->h[7] = U64(0x5be0cd19137e2179);

    c->Nl = 0;
    c->Nh = 0;
    c->num = 0;
    c->md_len = SHA512_DIGEST_LENGTH;
    return 1;
}

#ifndef SHA512_ASM
static
#endif
void sha512_block_data_order(SHA512_CTX *ctx, const void *in, size_t num);

int SHA512_Final(unsigned char *md, SHA512_CTX *c)
{
    unsigned char *p = (unsigned char *)c->u.p;
    size_t n = c->num;

    p[n] = 0x80;                /* There always is a room for one */
    n++;
    if (n > (sizeof(c->u) - 16)) {
        memset(p + n, 0, sizeof(c->u) - n);
        n = 0;
        sha512_block_data_order(c, p, 1);
    }

    memset(p + n, 0, sizeof(c->u) - 16 - n);
#ifdef  B_ENDIAN
    c->u.d[SHA_LBLOCK - 2] = c->Nh;
    c->u.d[SHA_LBLOCK - 1] = c->Nl;
#else
    p[sizeof(c->u) - 1] = (unsigned char)(c->Nl);
    p[sizeof(c->u) - 2] = (unsigned char)(c->Nl >> 8);
    p[sizeof(c->u) - 3] = (unsigned char)(c->Nl >> 16);
    p[sizeof(c->u) - 4] = (unsigned char)(c->Nl >> 24);
    p[sizeof(c->u) - 5] = (unsigned char)(c->Nl >> 32);
    p[sizeof(c->u) - 6] = (unsigned char)(c->Nl >> 40);
    p[sizeof(c->u) - 7] = (unsigned char)(c->Nl >> 48);
    p[sizeof(c->u) - 8] = (unsigned char)(c->Nl >> 56);
    p[sizeof(c->u) - 9] = (unsigned char)(c->Nh);
    p[sizeof(c->u) - 10] = (unsigned char)(c->Nh >> 8);
    p[sizeof(c->u) - 11] = (unsigned char)(c->Nh >> 16);
    p[sizeof(c->u) - 12] = (unsigned char)(c->Nh >> 24);
    p[sizeof(c->u) - 13] = (unsigned char)(c->Nh >> 32);
    p[sizeof(c->u) - 14] = (unsigned char)(c->Nh >> 40);
    p[sizeof(c->u) - 15] = (unsigned char)(c->Nh >> 48);
    p[sizeof(c->u) - 16] = (unsigned char)(c->Nh >> 56);
#endif

    sha512_block_data_order(c, p, 1);

    if (md == 0)
        return 0;

    switch (c->md_len) {
    /* Let compiler decide if it's appropriate to unroll... */
    case SHA384_DIGEST_LENGTH:
        for (n = 0; n < SHA384_DIGEST_LENGTH / 8; n++) {
            SHA_LONG64 t = c->h[n];

            *(md++) = (unsigned char)(t >> 56);
            *(md++) = (unsigned char)(t >> 48);
            *(md++) = (unsigned char)(t >> 40);
            *(md++) = (unsigned char)(t >> 32);
            *(md++) = (unsigned char)(t >> 24);
            *(md++) = (unsigned char)(t >> 16);
            *(md++) = (unsigned char)(t >> 8);
            *(md++) = (unsigned char)(t);
        }
        break;
    case SHA512_DIGEST_LENGTH:
        for (n = 0; n < SHA512_DIGEST_LENGTH / 8; n++) {
            SHA_LONG64 t = c->h[n];

            *(md++) = (unsigned char)(t >> 56);
            *(md++) = (unsigned char)(t >> 48);
            *(md++) = (unsigned char)(t >> 40);
            *(md++) = (unsigned char)(t >> 32);
            *(md++) = (unsigned char)(t >> 24);
            *(md++) = (unsigned char)(t >> 16);
            *(md++) = (unsigned char)(t >> 8);
            *(md++) = (unsigned char)(t);
        }
        break;
    /* ... as well as make sure md_len is not abused. */
    default:
        return 0;
    }

    return 1;
}

int SHA384_Final(unsigned char *md, SHA512_CTX *c)
{
    return SHA512_Final(md, c);
}

int SHA512_Update(SHA512_CTX *c, const void *_data, size_t len)
{
    SHA_LONG64 l;
    unsigned char *p = c->u.p;
    const unsigned char *data = (const unsigned char *)_data;

    if (len == 0)
        return 1;

    l = (c->Nl + (((SHA_LONG64) len) << 3)) & U64(0xffffffffffffffff);
    if (l < c->Nl)
        c->Nh++;
    if (sizeof(len) >= 8)
        c->Nh += (((SHA_LONG64) len) >> 61);
    c->Nl = l;

    if (c->num != 0) {
        size_t n = sizeof(c->u) - c->num;

        if (len < n) {
            memcpy(p + c->num, data, len), c->num += (unsigned int)len;
            return 1;
        } else {
            memcpy(p + c->num, data, n), c->num = 0;
            len -= n, data += n;
            sha512_block_data_order(c, p, 1);
        }
    }

    if (len >= sizeof(c->u)) {
#ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
        if ((size_t)data % sizeof(c->u.d[0]) != 0)
            while (len >= sizeof(c->u))
                memcpy(p, data, sizeof(c->u)),
                sha512_block_data_order(c, p, 1),
                len -= sizeof(c->u), data += sizeof(c->u);
        else
#endif
            sha512_block_data_order(c, data, len / sizeof(c->u)),
            data += len, len %= sizeof(c->u), data -= len;
    }

    if (len != 0)
        memcpy(p, data, len), c->num = (int)len;

    return 1;
}

int SHA384_Update(SHA512_CTX *c, const void *data, size_t len)
{
    return SHA512_Update(c, data, len);
}

void SHA512_Transform(SHA512_CTX *c, const unsigned char *data)
{
#ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
    if ((size_t)data % sizeof(c->u.d[0]) != 0)
        memcpy(c->u.p, data, sizeof(c->u.p)), data = c->u.p;
#endif
    sha512_block_data_order(c, data, 1);
}

unsigned char *SHA384(const unsigned char *d, size_t n, unsigned char *md)
{
    SHA512_CTX c;
    static unsigned char m[SHA384_DIGEST_LENGTH];

    if (md == NULL)
        md = m;
    SHA384_Init(&c);
    SHA512_Update(&c, d, n);
    SHA512_Final(md, &c);
    OPENSSL_cleanse(&c, sizeof(c));
    return (md);
}

unsigned char *SHA512(const unsigned char *d, size_t n, unsigned char *md)
{
    SHA512_CTX c;
    static unsigned char m[SHA512_DIGEST_LENGTH];

    if (md == NULL)
        md = m;
    SHA512_Init(&c);
    SHA512_Update(&c, d, n);
    SHA512_Final(md, &c);
    OPENSSL_cleanse(&c, sizeof(c));
    return (md);
}

#ifndef SHA512_ASM
static const SHA_LONG64 K512[80] = {
    U64(0x428a2f98d728ae22), U64(0x7137449123ef65cd),
    U64(0xb5c0fbcfec4d3b2f), U64(0xe9b5dba58189dbbc),
    U64(0x3956c25bf348b538), U64(0x59f111f1b605d019),
    U64(0x923f82a4af194f9b), U64(0xab1c5ed5da6d8118),
    U64(0xd807aa98a3030242), U64(0x12835b0145706fbe),
    U64(0x243185be4ee4b28c), U64(0x550c7dc3d5ffb4e2),
    U64(0x72be5d74f27b896f), U64(0x80deb1fe3b1696b1),
    U64(0x9bdc06a725c71235), U64(0xc19bf174cf692694),
    U64(0xe49b69c19ef14ad2), U64(0xefbe4786384f25e3),
    U64(0x0fc19dc68b8cd5b5), U64(0x240ca1cc77ac9c65),
    U64(0x2de92c6f592b0275), U64(0x4a7484aa6ea6e483),
    U64(0x5cb0a9dcbd41fbd4), U64(0x76f988da831153b5),
    U64(0x983e5152ee66dfab), U64(0xa831c66d2db43210),
    U64(0xb00327c898fb213f), U64(0xbf597fc7beef0ee4),
    U64(0xc6e00bf33da88fc2), U64(0xd5a79147930aa725),
    U64(0x06ca6351e003826f), U64(0x142929670a0e6e70),
    U64(0x27b70a8546d22ffc), U64(0x2e1b21385c26c926),
    U64(0x4d2c6dfc5ac42aed), U64(0x53380d139d95b3df),
    U64(0x650a73548baf63de), U64(0x766a0abb3c77b2a8),
    U64(0x81c2c92e47edaee6), U64(0x92722c851482353b),
    U64(0xa2bfe8a14cf10364), U64(0xa81a664bbc423001),
    U64(0xc24b8b70d0f89791), U64(0xc76c51a30654be30),
    U64(0xd192e819d6ef5218), U64(0xd69906245565a910),
    U64(0xf40e35855771202a), U64(0x106aa07032bbd1b8),
    U64(0x19a4c116b8d2d0c8), U64(0x1e376c085141ab53),
    U64(0x2748774cdf8eeb99), U64(0x34b0bcb5e19b48a8),
    U64(0x391c0cb3c5c95a63), U64(0x4ed8aa4ae3418acb),
    U64(0x5b9cca4f7763e373), U64(0x682e6ff3d6b2b8a3),
    U64(0x748f82ee5defb2fc), U64(0x78a5636f43172f60),
    U64(0x84c87814a1f0ab72), U64(0x8cc702081a6439ec),
    U64(0x90befffa23631e28), U64(0xa4506cebde82bde9),
    U64(0xbef9a3f7b2c67915), U64(0xc67178f2e372532b),
    U64(0xca273eceea26619c), U64(0xd186b8c721c0c207),
    U64(0xeada7dd6cde0eb1e), U64(0xf57d4f7fee6ed178),
    U64(0x06f067aa72176fba), U64(0x0a637dc5a2c898a6),
    U64(0x113f9804bef90dae), U64(0x1b710b35131c471b),
    U64(0x28db77f523047d84), U64(0x32caab7b40c72493),
    U64(0x3c9ebe0a15c9bebc), U64(0x431d67c49c100d4c),
    U64(0x4cc5d4becb3e42b6), U64(0x597f299cfc657e2a),
    U64(0x5fcb6fab3ad6faec), U64(0x6c44198c4a475817)
};

# ifndef PEDANTIC
#  if defined(__GNUC__) && __GNUC__>=2 && \
      !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
#   if defined(__x86_64) || defined(__x86_64__)
#    define ROTR(a,n)    ({ SHA_LONG64 ret;             \
                                asm ("rorq %1,%0"       \
                                : "=r"(ret)             \
                                : "J"(n),"0"(a)         \
                                : "cc"); ret;           })
#    if !defined(B_ENDIAN)
#     define PULL64(x) ({ SHA_LONG64 ret=*((const SHA_LONG64 *)(&(x)));  \
                                asm ("bswapq    %0"             \
                                : "=r"(ret)                     \
                                : "0"(ret)); ret;               })
#    endif
#   elif (defined(__i386) || defined(__i386__)) && !defined(B_ENDIAN)
#    if defined(I386_ONLY)
#     define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\
                          unsigned int hi=p[0],lo=p[1];          \
                                asm("xchgb %%ah,%%al;xchgb %%dh,%%dl;"\
                                    "roll $16,%%eax; roll $16,%%edx; "\
                                    "xchgb %%ah,%%al;xchgb %%dh,%%dl;"\
                                : "=a"(lo),"=d"(hi)             \
                                : "0"(lo),"1"(hi) : "cc");      \
                                ((SHA_LONG64)hi)<<32|lo;        })
#    else
#     define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\
                          unsigned int hi=p[0],lo=p[1];         \
                                asm ("bswapl %0; bswapl %1;"    \
                                : "=r"(lo),"=r"(hi)             \
                                : "0"(lo),"1"(hi));             \
                                ((SHA_LONG64)hi)<<32|lo;        })
#    endif
#   elif (defined(_ARCH_PPC) && defined(__64BIT__)) || defined(_ARCH_PPC64)
#    define ROTR(a,n)    ({ SHA_LONG64 ret;             \
                                asm ("rotrdi %0,%1,%2"  \
                                : "=r"(ret)             \
                                : "r"(a),"K"(n)); ret;  })
#   elif defined(__aarch64__)
#    define ROTR(a,n)    ({ SHA_LONG64 ret;             \
                                asm ("ror %0,%1,%2"     \
                                : "=r"(ret)             \
                                : "r"(a),"I"(n)); ret;  })
#    if  defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && \
        __BYTE_ORDER__==__ORDER_LITTLE_ENDIAN__
#     define PULL64(x)   ({ SHA_LONG64 ret;                     \
                                asm ("rev       %0,%1"          \
                                : "=r"(ret)                     \
                                : "r"(*((const SHA_LONG64 *)(&(x))))); ret; })
#    endif
#   endif
#  elif defined(_MSC_VER)
#   if defined(_WIN64)         /* applies to both IA-64 and AMD64 */
#    pragma intrinsic(_rotr64)
#    define ROTR(a,n)    _rotr64((a),n)
#   endif
#   if defined(_M_IX86) && !defined(OPENSSL_NO_ASM) && \
       !defined(OPENSSL_NO_INLINE_ASM)
#    if defined(I386_ONLY)
static SHA_LONG64 __fastcall __pull64be(const void *x)
{
    _asm mov  edx,[ecx + 0]
    _asm mov  eax,[ecx + 4]
    _asm xchg dh, dl
    _asm xchg ah, al
    _asm rol  edx, 16
    _asm rol  eax, 16
    _asm xchg dh, dl
    _asm xchg ah, al
}
#    else
static SHA_LONG64 __fastcall __pull64be(const void *x)
{
    _asm mov   edx,[ecx + 0]
    _asm mov   eax,[ecx + 4]
    _asm bswap edx
    _asm bswap eax
}
#    endif
#    define PULL64(x) __pull64be(&(x))
#    if _MSC_VER<=1200
#     pragma inline_depth(0)
#    endif
#   endif
#  endif
# endif
# ifndef PULL64
#  define B(x,j)    (((SHA_LONG64)(*(((const unsigned char *)(&x))+j)))<<((7-j)*8))
#  define PULL64(x) (B(x,0)|B(x,1)|B(x,2)|B(x,3)|B(x,4)|B(x,5)|B(x,6)|B(x,7))
# endif
# ifndef ROTR
#  define ROTR(x,s)       (((x)>>s) | (x)<<(64-s))
# endif
# define Sigma0(x)       (ROTR((x),28) ^ ROTR((x),34) ^ ROTR((x),39))
# define Sigma1(x)       (ROTR((x),14) ^ ROTR((x),18) ^ ROTR((x),41))
# define sigma0(x)       (ROTR((x),1)  ^ ROTR((x),8)  ^ ((x)>>7))
# define sigma1(x)       (ROTR((x),19) ^ ROTR((x),61) ^ ((x)>>6))
# define Ch(x,y,z)       (((x) & (y)) ^ ((~(x)) & (z)))
# define Maj(x,y,z)      (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))

# if defined(__i386) || defined(__i386__) || defined(_M_IX86)
/*
 * This code should give better results on 32-bit CPU with less than
 * ~24 registers, both size and performance wise...
 */

static void sha512_block_data_order(SHA512_CTX *ctx, const void *in,
                                    size_t num)
{
    const SHA_LONG64 *W = in;
    SHA_LONG64 A, E, T;
    SHA_LONG64 X[9 + 80], *F;
    int i;

    while (num--) {

        F = X + 80;
        A = ctx->h[0];
        F[1] = ctx->h[1];
        F[2] = ctx->h[2];
        F[3] = ctx->h[3];
        E = ctx->h[4];
        F[5] = ctx->h[5];
        F[6] = ctx->h[6];
        F[7] = ctx->h[7];

        for (i = 0; i < 16; i++, F--) {
#  ifdef B_ENDIAN
            T = W[i];
#  else
            T = PULL64(W[i]);
#  endif
            F[0] = A;
            F[4] = E;
            F[8] = T;
            T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
            E = F[3] + T;
            A = T + Sigma0(A) + Maj(A, F[1], F[2]);
        }

        for (; i < 80; i++, F--) {
            T = sigma0(F[8 + 16 - 1]);
            T += sigma1(F[8 + 16 - 14]);
            T += F[8 + 16] + F[8 + 16 - 9];

            F[0] = A;
            F[4] = E;
            F[8] = T;
            T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
            E = F[3] + T;
            A = T + Sigma0(A) + Maj(A, F[1], F[2]);
        }

        ctx->h[0] += A;
        ctx->h[1] += F[1];
        ctx->h[2] += F[2];
        ctx->h[3] += F[3];
        ctx->h[4] += E;
        ctx->h[5] += F[5];
        ctx->h[6] += F[6];
        ctx->h[7] += F[7];

        W += SHA_LBLOCK;
    }
}

# elif defined(OPENSSL_SMALL_FOOTPRINT)

static void sha512_block_data_order(SHA512_CTX *ctx, const void *in,
                                    size_t num)
{
    const SHA_LONG64 *W = in;
    SHA_LONG64 a, b, c, d, e, f, g, h, s0, s1, T1, T2;
    SHA_LONG64 X[16];
    int i;

    while (num--) {

        a = ctx->h[0];
        b = ctx->h[1];
        c = ctx->h[2];
        d = ctx->h[3];
        e = ctx->h[4];
        f = ctx->h[5];
        g = ctx->h[6];
        h = ctx->h[7];

        for (i = 0; i < 16; i++) {
#  ifdef B_ENDIAN
            T1 = X[i] = W[i];
#  else
            T1 = X[i] = PULL64(W[i]);
#  endif
            T1 += h + Sigma1(e) + Ch(e, f, g) + K512[i];
            T2 = Sigma0(a) + Maj(a, b, c);
            h = g;
            g = f;
            f = e;
            e = d + T1;
            d = c;
            c = b;
            b = a;
            a = T1 + T2;
        }

        for (; i < 80; i++) {
            s0 = X[(i + 1) & 0x0f];
            s0 = sigma0(s0);
            s1 = X[(i + 14) & 0x0f];
            s1 = sigma1(s1);

            T1 = X[i & 0xf] += s0 + s1 + X[(i + 9) & 0xf];
            T1 += h + Sigma1(e) + Ch(e, f, g) + K512[i];
            T2 = Sigma0(a) + Maj(a, b, c);
            h = g;
            g = f;
            f = e;
            e = d + T1;
            d = c;
            c = b;
            b = a;
            a = T1 + T2;
        }

        ctx->h[0] += a;
        ctx->h[1] += b;
        ctx->h[2] += c;
        ctx->h[3] += d;
        ctx->h[4] += e;
        ctx->h[5] += f;
        ctx->h[6] += g;
        ctx->h[7] += h;

        W += SHA_LBLOCK;
    }
}

# else
#  define ROUND_00_15(i,a,b,c,d,e,f,g,h)        do {    \
        T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i];      \
        h = Sigma0(a) + Maj(a,b,c);                     \
        d += T1;        h += T1;                        } while (0)

#  define ROUND_16_80(i,j,a,b,c,d,e,f,g,h,X)    do {    \
        s0 = X[(j+1)&0x0f];     s0 = sigma0(s0);        \
        s1 = X[(j+14)&0x0f];    s1 = sigma1(s1);        \
        T1 = X[(j)&0x0f] += s0 + s1 + X[(j+9)&0x0f];    \
        ROUND_00_15(i+j,a,b,c,d,e,f,g,h);               } while (0)

static void sha512_block_data_order(SHA512_CTX *ctx, const void *in,
                                    size_t num)
{
    const SHA_LONG64 *W = in;
    SHA_LONG64 a, b, c, d, e, f, g, h, s0, s1, T1;
    SHA_LONG64 X[16];
    int i;

    while (num--) {

        a = ctx->h[0];
        b = ctx->h[1];
        c = ctx->h[2];
        d = ctx->h[3];
        e = ctx->h[4];
        f = ctx->h[5];
        g = ctx->h[6];
        h = ctx->h[7];

#  ifdef B_ENDIAN
        T1 = X[0] = W[0];
        ROUND_00_15(0, a, b, c, d, e, f, g, h);
        T1 = X[1] = W[1];
        ROUND_00_15(1, h, a, b, c, d, e, f, g);
        T1 = X[2] = W[2];
        ROUND_00_15(2, g, h, a, b, c, d, e, f);
        T1 = X[3] = W[3];
        ROUND_00_15(3, f, g, h, a, b, c, d, e);
        T1 = X[4] = W[4];
        ROUND_00_15(4, e, f, g, h, a, b, c, d);
        T1 = X[5] = W[5];
        ROUND_00_15(5, d, e, f, g, h, a, b, c);
        T1 = X[6] = W[6];
        ROUND_00_15(6, c, d, e, f, g, h, a, b);
        T1 = X[7] = W[7];
        ROUND_00_15(7, b, c, d, e, f, g, h, a);
        T1 = X[8] = W[8];
        ROUND_00_15(8, a, b, c, d, e, f, g, h);
        T1 = X[9] = W[9];
        ROUND_00_15(9, h, a, b, c, d, e, f, g);
        T1 = X[10] = W[10];
        ROUND_00_15(10, g, h, a, b, c, d, e, f);
        T1 = X[11] = W[11];
        ROUND_00_15(11, f, g, h, a, b, c, d, e);
        T1 = X[12] = W[12];
        ROUND_00_15(12, e, f, g, h, a, b, c, d);
        T1 = X[13] = W[13];
        ROUND_00_15(13, d, e, f, g, h, a, b, c);
        T1 = X[14] = W[14];
        ROUND_00_15(14, c, d, e, f, g, h, a, b);
        T1 = X[15] = W[15];
        ROUND_00_15(15, b, c, d, e, f, g, h, a);
#  else
        T1 = X[0] = PULL64(W[0]);
        ROUND_00_15(0, a, b, c, d, e, f, g, h);
        T1 = X[1] = PULL64(W[1]);
        ROUND_00_15(1, h, a, b, c, d, e, f, g);
        T1 = X[2] = PULL64(W[2]);
        ROUND_00_15(2, g, h, a, b, c, d, e, f);
        T1 = X[3] = PULL64(W[3]);
        ROUND_00_15(3, f, g, h, a, b, c, d, e);
        T1 = X[4] = PULL64(W[4]);
        ROUND_00_15(4, e, f, g, h, a, b, c, d);
        T1 = X[5] = PULL64(W[5]);
        ROUND_00_15(5, d, e, f, g, h, a, b, c);
        T1 = X[6] = PULL64(W[6]);
        ROUND_00_15(6, c, d, e, f, g, h, a, b);
        T1 = X[7] = PULL64(W[7]);
        ROUND_00_15(7, b, c, d, e, f, g, h, a);
        T1 = X[8] = PULL64(W[8]);
        ROUND_00_15(8, a, b, c, d, e, f, g, h);
        T1 = X[9] = PULL64(W[9]);
        ROUND_00_15(9, h, a, b, c, d, e, f, g);
        T1 = X[10] = PULL64(W[10]);
        ROUND_00_15(10, g, h, a, b, c, d, e, f);
        T1 = X[11] = PULL64(W[11]);
        ROUND_00_15(11, f, g, h, a, b, c, d, e);
        T1 = X[12] = PULL64(W[12]);
        ROUND_00_15(12, e, f, g, h, a, b, c, d);
        T1 = X[13] = PULL64(W[13]);
        ROUND_00_15(13, d, e, f, g, h, a, b, c);
        T1 = X[14] = PULL64(W[14]);
        ROUND_00_15(14, c, d, e, f, g, h, a, b);
        T1 = X[15] = PULL64(W[15]);
        ROUND_00_15(15, b, c, d, e, f, g, h, a);
#  endif

        for (i = 16; i < 80; i += 16) {
            ROUND_16_80(i, 0, a, b, c, d, e, f, g, h, X);
            ROUND_16_80(i, 1, h, a, b, c, d, e, f, g, X);
            ROUND_16_80(i, 2, g, h, a, b, c, d, e, f, X);
            ROUND_16_80(i, 3, f, g, h, a, b, c, d, e, X);
            ROUND_16_80(i, 4, e, f, g, h, a, b, c, d, X);
            ROUND_16_80(i, 5, d, e, f, g, h, a, b, c, X);
            ROUND_16_80(i, 6, c, d, e, f, g, h, a, b, X);
            ROUND_16_80(i, 7, b, c, d, e, f, g, h, a, X);
            ROUND_16_80(i, 8, a, b, c, d, e, f, g, h, X);
            ROUND_16_80(i, 9, h, a, b, c, d, e, f, g, X);
            ROUND_16_80(i, 10, g, h, a, b, c, d, e, f, X);
            ROUND_16_80(i, 11, f, g, h, a, b, c, d, e, X);
            ROUND_16_80(i, 12, e, f, g, h, a, b, c, d, X);
            ROUND_16_80(i, 13, d, e, f, g, h, a, b, c, X);
            ROUND_16_80(i, 14, c, d, e, f, g, h, a, b, X);
            ROUND_16_80(i, 15, b, c, d, e, f, g, h, a, X);
        }

        ctx->h[0] += a;
        ctx->h[1] += b;
        ctx->h[2] += c;
        ctx->h[3] += d;
        ctx->h[4] += e;
        ctx->h[5] += f;
        ctx->h[6] += g;
        ctx->h[7] += h;

        W += SHA_LBLOCK;
    }
}

# endif

#endif                         /* SHA512_ASM */