aboutsummaryrefslogtreecommitdiff
path: root/openssl-1.1.0h/crypto/rand/md_rand.c
blob: 7d5fcb7f6705887e0b4153cc9e4467c5c2216890 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
/*
 * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

#include <stdio.h>
#include <string.h>

#include "e_os.h"

#if !(defined(OPENSSL_SYS_WIN32) || defined(OPENSSL_SYS_VXWORKS) || defined(OPENSSL_SYS_DSPBIOS))
# include <sys/time.h>
#endif
#if defined(OPENSSL_SYS_VXWORKS)
# include <time.h>
#endif

#include <openssl/opensslconf.h>
#include <openssl/crypto.h>
#include <openssl/rand.h>
#include <openssl/async.h>
#include "rand_lcl.h"

#include <openssl/err.h>

#include <internal/thread_once.h>

#ifdef OPENSSL_FIPS
# include <openssl/fips.h>
#endif

#ifdef BN_DEBUG
# define PREDICT
#endif

/* #define PREDICT      1 */

#define STATE_SIZE      1023
static size_t state_num = 0, state_index = 0;
static unsigned char state[STATE_SIZE + MD_DIGEST_LENGTH];
static unsigned char md[MD_DIGEST_LENGTH];
static long md_count[2] = { 0, 0 };

static double entropy = 0;
static int initialized = 0;

static CRYPTO_RWLOCK *rand_lock = NULL;
static CRYPTO_RWLOCK *rand_tmp_lock = NULL;
static CRYPTO_ONCE rand_lock_init = CRYPTO_ONCE_STATIC_INIT;

/* May be set only when a thread holds rand_lock (to prevent double locking) */
static unsigned int crypto_lock_rand = 0;
/* access to locking_threadid is synchronized by rand_tmp_lock */
/* valid iff crypto_lock_rand is set */
static CRYPTO_THREAD_ID locking_threadid;

#ifdef PREDICT
int rand_predictable = 0;
#endif

static int rand_hw_seed(EVP_MD_CTX *ctx);

static void rand_cleanup(void);
static int rand_seed(const void *buf, int num);
static int rand_add(const void *buf, int num, double add_entropy);
static int rand_bytes(unsigned char *buf, int num, int pseudo);
static int rand_nopseudo_bytes(unsigned char *buf, int num);
#if OPENSSL_API_COMPAT < 0x10100000L
static int rand_pseudo_bytes(unsigned char *buf, int num);
#endif
static int rand_status(void);

static RAND_METHOD rand_meth = {
    rand_seed,
    rand_nopseudo_bytes,
    rand_cleanup,
    rand_add,
#if OPENSSL_API_COMPAT < 0x10100000L
    rand_pseudo_bytes,
#else
    NULL,
#endif
    rand_status
};

DEFINE_RUN_ONCE_STATIC(do_rand_lock_init)
{
    OPENSSL_init_crypto(0, NULL);
    rand_lock = CRYPTO_THREAD_lock_new();
    rand_tmp_lock = CRYPTO_THREAD_lock_new();
    return rand_lock != NULL && rand_tmp_lock != NULL;
}

RAND_METHOD *RAND_OpenSSL(void)
{
    return (&rand_meth);
}

static void rand_cleanup(void)
{
    OPENSSL_cleanse(state, sizeof(state));
    state_num = 0;
    state_index = 0;
    OPENSSL_cleanse(md, MD_DIGEST_LENGTH);
    md_count[0] = 0;
    md_count[1] = 0;
    entropy = 0;
    initialized = 0;
    CRYPTO_THREAD_lock_free(rand_lock);
    CRYPTO_THREAD_lock_free(rand_tmp_lock);
}

static int rand_add(const void *buf, int num, double add)
{
    int i, j, k, st_idx;
    long md_c[2];
    unsigned char local_md[MD_DIGEST_LENGTH];
    EVP_MD_CTX *m;
    int do_not_lock;
    int rv = 0;

    if (!num)
        return 1;

    /*
     * (Based on the rand(3) manpage)
     *
     * The input is chopped up into units of 20 bytes (or less for
     * the last block).  Each of these blocks is run through the hash
     * function as follows:  The data passed to the hash function
     * is the current 'md', the same number of bytes from the 'state'
     * (the location determined by in incremented looping index) as
     * the current 'block', the new key data 'block', and 'count'
     * (which is incremented after each use).
     * The result of this is kept in 'md' and also xored into the
     * 'state' at the same locations that were used as input into the
     * hash function.
     */

    m = EVP_MD_CTX_new();
    if (m == NULL)
        goto err;

    if (!RUN_ONCE(&rand_lock_init, do_rand_lock_init))
        goto err;

    /* check if we already have the lock */
    if (crypto_lock_rand) {
        CRYPTO_THREAD_ID cur = CRYPTO_THREAD_get_current_id();
        CRYPTO_THREAD_read_lock(rand_tmp_lock);
        do_not_lock = CRYPTO_THREAD_compare_id(locking_threadid, cur);
        CRYPTO_THREAD_unlock(rand_tmp_lock);
    } else
        do_not_lock = 0;

    if (!do_not_lock)
        CRYPTO_THREAD_write_lock(rand_lock);
    st_idx = state_index;

    /*
     * use our own copies of the counters so that even if a concurrent thread
     * seeds with exactly the same data and uses the same subarray there's
     * _some_ difference
     */
    md_c[0] = md_count[0];
    md_c[1] = md_count[1];

    memcpy(local_md, md, sizeof(md));

    /* state_index <= state_num <= STATE_SIZE */
    state_index += num;
    if (state_index >= STATE_SIZE) {
        state_index %= STATE_SIZE;
        state_num = STATE_SIZE;
    } else if (state_num < STATE_SIZE) {
        if (state_index > state_num)
            state_num = state_index;
    }
    /* state_index <= state_num <= STATE_SIZE */

    /*
     * state[st_idx], ..., state[(st_idx + num - 1) % STATE_SIZE] are what we
     * will use now, but other threads may use them as well
     */

    md_count[1] += (num / MD_DIGEST_LENGTH) + (num % MD_DIGEST_LENGTH > 0);

    if (!do_not_lock)
        CRYPTO_THREAD_unlock(rand_lock);

    for (i = 0; i < num; i += MD_DIGEST_LENGTH) {
        j = (num - i);
        j = (j > MD_DIGEST_LENGTH) ? MD_DIGEST_LENGTH : j;

        if (!MD_Init(m))
            goto err;
        if (!MD_Update(m, local_md, MD_DIGEST_LENGTH))
            goto err;
        k = (st_idx + j) - STATE_SIZE;
        if (k > 0) {
            if (!MD_Update(m, &(state[st_idx]), j - k))
                goto err;
            if (!MD_Update(m, &(state[0]), k))
                goto err;
        } else if (!MD_Update(m, &(state[st_idx]), j))
            goto err;

        /* DO NOT REMOVE THE FOLLOWING CALL TO MD_Update()! */
        if (!MD_Update(m, buf, j))
            goto err;
        /*
         * We know that line may cause programs such as purify and valgrind
         * to complain about use of uninitialized data.  The problem is not,
         * it's with the caller.  Removing that line will make sure you get
         * really bad randomness and thereby other problems such as very
         * insecure keys.
         */

        if (!MD_Update(m, (unsigned char *)&(md_c[0]), sizeof(md_c)))
            goto err;
        if (!MD_Final(m, local_md))
            goto err;
        md_c[1]++;

        buf = (const char *)buf + j;

        for (k = 0; k < j; k++) {
            /*
             * Parallel threads may interfere with this, but always each byte
             * of the new state is the XOR of some previous value of its and
             * local_md (intermediate values may be lost). Alway using locking
             * could hurt performance more than necessary given that
             * conflicts occur only when the total seeding is longer than the
             * random state.
             */
            state[st_idx++] ^= local_md[k];
            if (st_idx >= STATE_SIZE)
                st_idx = 0;
        }
    }

    if (!do_not_lock)
        CRYPTO_THREAD_write_lock(rand_lock);
    /*
     * Don't just copy back local_md into md -- this could mean that other
     * thread's seeding remains without effect (except for the incremented
     * counter).  By XORing it we keep at least as much entropy as fits into
     * md.
     */
    for (k = 0; k < (int)sizeof(md); k++) {
        md[k] ^= local_md[k];
    }
    if (entropy < ENTROPY_NEEDED) /* stop counting when we have enough */
        entropy += add;
    if (!do_not_lock)
        CRYPTO_THREAD_unlock(rand_lock);

    rv = 1;
 err:
    EVP_MD_CTX_free(m);
    return rv;
}

static int rand_seed(const void *buf, int num)
{
    return rand_add(buf, num, (double)num);
}

static int rand_bytes(unsigned char *buf, int num, int pseudo)
{
    static volatile int stirred_pool = 0;
    int i, j, k;
    size_t num_ceil, st_idx, st_num;
    int ok;
    long md_c[2];
    unsigned char local_md[MD_DIGEST_LENGTH];
    EVP_MD_CTX *m;
#ifndef GETPID_IS_MEANINGLESS
    pid_t curr_pid = getpid();
#endif
    time_t curr_time = time(NULL);
    int do_stir_pool = 0;
/* time value for various platforms */
#ifdef OPENSSL_SYS_WIN32
    FILETIME tv;
# ifdef _WIN32_WCE
    SYSTEMTIME t;
    GetSystemTime(&t);
    SystemTimeToFileTime(&t, &tv);
# else
    GetSystemTimeAsFileTime(&tv);
# endif
#elif defined(OPENSSL_SYS_VXWORKS)
    struct timespec tv;
    clock_gettime(CLOCK_REALTIME, &ts);
#elif defined(OPENSSL_SYS_DSPBIOS)
    unsigned long long tv, OPENSSL_rdtsc();
    tv = OPENSSL_rdtsc();
#else
    struct timeval tv;
    gettimeofday(&tv, NULL);
#endif

#ifdef PREDICT
    if (rand_predictable) {
        static unsigned char val = 0;

        for (i = 0; i < num; i++)
            buf[i] = val++;
        return (1);
    }
#endif

    if (num <= 0)
        return 1;

    m = EVP_MD_CTX_new();
    if (m == NULL)
        goto err_mem;

    /* round upwards to multiple of MD_DIGEST_LENGTH/2 */
    num_ceil =
        (1 + (num - 1) / (MD_DIGEST_LENGTH / 2)) * (MD_DIGEST_LENGTH / 2);

    /*
     * (Based on the rand(3) manpage:)
     *
     * For each group of 10 bytes (or less), we do the following:
     *
     * Input into the hash function the local 'md' (which is initialized from
     * the global 'md' before any bytes are generated), the bytes that are to
     * be overwritten by the random bytes, and bytes from the 'state'
     * (incrementing looping index). From this digest output (which is kept
     * in 'md'), the top (up to) 10 bytes are returned to the caller and the
     * bottom 10 bytes are xored into the 'state'.
     *
     * Finally, after we have finished 'num' random bytes for the
     * caller, 'count' (which is incremented) and the local and global 'md'
     * are fed into the hash function and the results are kept in the
     * global 'md'.
     */

    if (!RUN_ONCE(&rand_lock_init, do_rand_lock_init))
        goto err_mem;

    CRYPTO_THREAD_write_lock(rand_lock);
    /*
     * We could end up in an async engine while holding this lock so ensure
     * we don't pause and cause a deadlock
     */
    ASYNC_block_pause();

    /* prevent rand_bytes() from trying to obtain the lock again */
    CRYPTO_THREAD_write_lock(rand_tmp_lock);
    locking_threadid = CRYPTO_THREAD_get_current_id();
    CRYPTO_THREAD_unlock(rand_tmp_lock);
    crypto_lock_rand = 1;

    if (!initialized) {
        RAND_poll();
        initialized = 1;
    }

    if (!stirred_pool)
        do_stir_pool = 1;

    ok = (entropy >= ENTROPY_NEEDED);
    if (!ok) {
        /*
         * If the PRNG state is not yet unpredictable, then seeing the PRNG
         * output may help attackers to determine the new state; thus we have
         * to decrease the entropy estimate. Once we've had enough initial
         * seeding we don't bother to adjust the entropy count, though,
         * because we're not ambitious to provide *information-theoretic*
         * randomness. NOTE: This approach fails if the program forks before
         * we have enough entropy. Entropy should be collected in a separate
         * input pool and be transferred to the output pool only when the
         * entropy limit has been reached.
         */
        entropy -= num;
        if (entropy < 0)
            entropy = 0;
    }

    if (do_stir_pool) {
        /*
         * In the output function only half of 'md' remains secret, so we
         * better make sure that the required entropy gets 'evenly
         * distributed' through 'state', our randomness pool. The input
         * function (rand_add) chains all of 'md', which makes it more
         * suitable for this purpose.
         */

        int n = STATE_SIZE;     /* so that the complete pool gets accessed */
        while (n > 0) {
#if MD_DIGEST_LENGTH > 20
# error "Please adjust DUMMY_SEED."
#endif
#define DUMMY_SEED "...................." /* at least MD_DIGEST_LENGTH */
            /*
             * Note that the seed does not matter, it's just that
             * rand_add expects to have something to hash.
             */
            rand_add(DUMMY_SEED, MD_DIGEST_LENGTH, 0.0);
            n -= MD_DIGEST_LENGTH;
        }
        if (ok)
            stirred_pool = 1;
    }

    st_idx = state_index;
    st_num = state_num;
    md_c[0] = md_count[0];
    md_c[1] = md_count[1];
    memcpy(local_md, md, sizeof(md));

    state_index += num_ceil;
    if (state_index > state_num)
        state_index %= state_num;

    /*
     * state[st_idx], ..., state[(st_idx + num_ceil - 1) % st_num] are now
     * ours (but other threads may use them too)
     */

    md_count[0] += 1;

    /* before unlocking, we must clear 'crypto_lock_rand' */
    crypto_lock_rand = 0;
    ASYNC_unblock_pause();
    CRYPTO_THREAD_unlock(rand_lock);

    while (num > 0) {
        /* num_ceil -= MD_DIGEST_LENGTH/2 */
        j = (num >= MD_DIGEST_LENGTH / 2) ? MD_DIGEST_LENGTH / 2 : num;
        num -= j;
        if (!MD_Init(m))
            goto err;
#ifndef GETPID_IS_MEANINGLESS
        if (curr_pid) {         /* just in the first iteration to save time */
            if (!MD_Update(m, (unsigned char *)&curr_pid, sizeof(curr_pid)))
                goto err;
            curr_pid = 0;
        }
#endif
        if (curr_time) {        /* just in the first iteration to save time */
            if (!MD_Update(m, (unsigned char *)&curr_time, sizeof(curr_time)))
                goto err;
            if (!MD_Update(m, (unsigned char *)&tv, sizeof(tv)))
                goto err;
            curr_time = 0;
            if (!rand_hw_seed(m))
                goto err;
        }
        if (!MD_Update(m, local_md, MD_DIGEST_LENGTH))
            goto err;
        if (!MD_Update(m, (unsigned char *)&(md_c[0]), sizeof(md_c)))
            goto err;

        k = (st_idx + MD_DIGEST_LENGTH / 2) - st_num;
        if (k > 0) {
            if (!MD_Update(m, &(state[st_idx]), MD_DIGEST_LENGTH / 2 - k))
                goto err;
            if (!MD_Update(m, &(state[0]), k))
                goto err;
        } else if (!MD_Update(m, &(state[st_idx]), MD_DIGEST_LENGTH / 2))
            goto err;
        if (!MD_Final(m, local_md))
            goto err;

        for (i = 0; i < MD_DIGEST_LENGTH / 2; i++) {
            /* may compete with other threads */
            state[st_idx++] ^= local_md[i];
            if (st_idx >= st_num)
                st_idx = 0;
            if (i < j)
                *(buf++) = local_md[i + MD_DIGEST_LENGTH / 2];
        }
    }

    if (!MD_Init(m)
        || !MD_Update(m, (unsigned char *)&(md_c[0]), sizeof(md_c))
        || !MD_Update(m, local_md, MD_DIGEST_LENGTH))
        goto err;
    CRYPTO_THREAD_write_lock(rand_lock);
    /*
     * Prevent deadlocks if we end up in an async engine
     */
    ASYNC_block_pause();
    if (!MD_Update(m, md, MD_DIGEST_LENGTH) || !MD_Final(m, md)) {
        ASYNC_unblock_pause();
        CRYPTO_THREAD_unlock(rand_lock);
        goto err;
    }
    ASYNC_unblock_pause();
    CRYPTO_THREAD_unlock(rand_lock);

    EVP_MD_CTX_free(m);
    if (ok)
        return (1);
    else if (pseudo)
        return 0;
    else {
        RANDerr(RAND_F_RAND_BYTES, RAND_R_PRNG_NOT_SEEDED);
        ERR_add_error_data(1, "You need to read the OpenSSL FAQ, "
                           "https://www.openssl.org/docs/faq.html");
        return (0);
    }
 err:
    RANDerr(RAND_F_RAND_BYTES, ERR_R_EVP_LIB);
    EVP_MD_CTX_free(m);
    return 0;
 err_mem:
    RANDerr(RAND_F_RAND_BYTES, ERR_R_MALLOC_FAILURE);
    EVP_MD_CTX_free(m);
    return 0;

}

static int rand_nopseudo_bytes(unsigned char *buf, int num)
{
    return rand_bytes(buf, num, 0);
}

#if OPENSSL_API_COMPAT < 0x10100000L
/*
 * pseudo-random bytes that are guaranteed to be unique but not unpredictable
 */
static int rand_pseudo_bytes(unsigned char *buf, int num)
{
    return rand_bytes(buf, num, 1);
}
#endif

static int rand_status(void)
{
    CRYPTO_THREAD_ID cur;
    int ret;
    int do_not_lock;

    if (!RUN_ONCE(&rand_lock_init, do_rand_lock_init))
        return 0;

    cur = CRYPTO_THREAD_get_current_id();
    /*
     * check if we already have the lock (could happen if a RAND_poll()
     * implementation calls RAND_status())
     */
    if (crypto_lock_rand) {
        CRYPTO_THREAD_read_lock(rand_tmp_lock);
        do_not_lock = CRYPTO_THREAD_compare_id(locking_threadid, cur);
        CRYPTO_THREAD_unlock(rand_tmp_lock);
    } else
        do_not_lock = 0;

    if (!do_not_lock) {
        CRYPTO_THREAD_write_lock(rand_lock);
        /*
         * Prevent deadlocks in case we end up in an async engine
         */
        ASYNC_block_pause();

        /*
         * prevent rand_bytes() from trying to obtain the lock again
         */
        CRYPTO_THREAD_write_lock(rand_tmp_lock);
        locking_threadid = cur;
        CRYPTO_THREAD_unlock(rand_tmp_lock);
        crypto_lock_rand = 1;
    }

    if (!initialized) {
        RAND_poll();
        initialized = 1;
    }

    ret = entropy >= ENTROPY_NEEDED;

    if (!do_not_lock) {
        /* before unlocking, we must clear 'crypto_lock_rand' */
        crypto_lock_rand = 0;

        ASYNC_unblock_pause();
        CRYPTO_THREAD_unlock(rand_lock);
    }

    return ret;
}

/*
 * rand_hw_seed: get seed data from any available hardware RNG. only
 * currently supports rdrand.
 */

/* Adapted from eng_rdrand.c */

#if (defined(__i386)   || defined(__i386__)   || defined(_M_IX86) || \
     defined(__x86_64) || defined(__x86_64__) || \
     defined(_M_AMD64) || defined (_M_X64)) && defined(OPENSSL_CPUID_OBJ) \
     && !defined(OPENSSL_NO_RDRAND)

# define RDRAND_CALLS    4

size_t OPENSSL_ia32_rdrand(void);
extern unsigned int OPENSSL_ia32cap_P[];

static int rand_hw_seed(EVP_MD_CTX *ctx)
{
    int i;
    if (!(OPENSSL_ia32cap_P[1] & (1 << (62 - 32))))
        return 1;
    for (i = 0; i < RDRAND_CALLS; i++) {
        size_t rnd;
        rnd = OPENSSL_ia32_rdrand();
        if (rnd == 0)
            return 1;
        if (!MD_Update(ctx, (unsigned char *)&rnd, sizeof(size_t)))
            return 0;
    }
    return 1;
}

/* XOR an existing buffer with random data */

void rand_hw_xor(unsigned char *buf, size_t num)
{
    size_t rnd;
    if (!(OPENSSL_ia32cap_P[1] & (1 << (62 - 32))))
        return;
    while (num >= sizeof(size_t)) {
        rnd = OPENSSL_ia32_rdrand();
        if (rnd == 0)
            return;
        *((size_t *)buf) ^= rnd;
        buf += sizeof(size_t);
        num -= sizeof(size_t);
    }
    if (num) {
        rnd = OPENSSL_ia32_rdrand();
        if (rnd == 0)
            return;
        while (num) {
            *buf ^= rnd & 0xff;
            rnd >>= 8;
            buf++;
            num--;
        }
    }
}

#else

static int rand_hw_seed(EVP_MD_CTX *ctx)
{
    return 1;
}

void rand_hw_xor(unsigned char *buf, size_t num)
{
    return;
}

#endif