aboutsummaryrefslogtreecommitdiff
path: root/openssl-1.1.0h/crypto/evp/scrypt.c
blob: 101bb1edbd482f0b93f703bc571bb7ecce85999a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
/*
 * Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

#include <stddef.h>
#include <stdio.h>
#include <string.h>
#include <openssl/evp.h>
#include <openssl/err.h>
#include <internal/numbers.h>

#ifndef OPENSSL_NO_SCRYPT

#define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
static void salsa208_word_specification(uint32_t inout[16])
{
    int i;
    uint32_t x[16];
    memcpy(x, inout, sizeof(x));
    for (i = 8; i > 0; i -= 2) {
        x[4] ^= R(x[0] + x[12], 7);
        x[8] ^= R(x[4] + x[0], 9);
        x[12] ^= R(x[8] + x[4], 13);
        x[0] ^= R(x[12] + x[8], 18);
        x[9] ^= R(x[5] + x[1], 7);
        x[13] ^= R(x[9] + x[5], 9);
        x[1] ^= R(x[13] + x[9], 13);
        x[5] ^= R(x[1] + x[13], 18);
        x[14] ^= R(x[10] + x[6], 7);
        x[2] ^= R(x[14] + x[10], 9);
        x[6] ^= R(x[2] + x[14], 13);
        x[10] ^= R(x[6] + x[2], 18);
        x[3] ^= R(x[15] + x[11], 7);
        x[7] ^= R(x[3] + x[15], 9);
        x[11] ^= R(x[7] + x[3], 13);
        x[15] ^= R(x[11] + x[7], 18);
        x[1] ^= R(x[0] + x[3], 7);
        x[2] ^= R(x[1] + x[0], 9);
        x[3] ^= R(x[2] + x[1], 13);
        x[0] ^= R(x[3] + x[2], 18);
        x[6] ^= R(x[5] + x[4], 7);
        x[7] ^= R(x[6] + x[5], 9);
        x[4] ^= R(x[7] + x[6], 13);
        x[5] ^= R(x[4] + x[7], 18);
        x[11] ^= R(x[10] + x[9], 7);
        x[8] ^= R(x[11] + x[10], 9);
        x[9] ^= R(x[8] + x[11], 13);
        x[10] ^= R(x[9] + x[8], 18);
        x[12] ^= R(x[15] + x[14], 7);
        x[13] ^= R(x[12] + x[15], 9);
        x[14] ^= R(x[13] + x[12], 13);
        x[15] ^= R(x[14] + x[13], 18);
    }
    for (i = 0; i < 16; ++i)
        inout[i] += x[i];
    OPENSSL_cleanse(x, sizeof(x));
}

static void scryptBlockMix(uint32_t *B_, uint32_t *B, uint64_t r)
{
    uint64_t i, j;
    uint32_t X[16], *pB;

    memcpy(X, B + (r * 2 - 1) * 16, sizeof(X));
    pB = B;
    for (i = 0; i < r * 2; i++) {
        for (j = 0; j < 16; j++)
            X[j] ^= *pB++;
        salsa208_word_specification(X);
        memcpy(B_ + (i / 2 + (i & 1) * r) * 16, X, sizeof(X));
    }
    OPENSSL_cleanse(X, sizeof(X));
}

static void scryptROMix(unsigned char *B, uint64_t r, uint64_t N,
                        uint32_t *X, uint32_t *T, uint32_t *V)
{
    unsigned char *pB;
    uint32_t *pV;
    uint64_t i, k;

    /* Convert from little endian input */
    for (pV = V, i = 0, pB = B; i < 32 * r; i++, pV++) {
        *pV = *pB++;
        *pV |= *pB++ << 8;
        *pV |= *pB++ << 16;
        *pV |= (uint32_t)*pB++ << 24;
    }

    for (i = 1; i < N; i++, pV += 32 * r)
        scryptBlockMix(pV, pV - 32 * r, r);

    scryptBlockMix(X, V + (N - 1) * 32 * r, r);

    for (i = 0; i < N; i++) {
        uint32_t j;
        j = X[16 * (2 * r - 1)] % N;
        pV = V + 32 * r * j;
        for (k = 0; k < 32 * r; k++)
            T[k] = X[k] ^ *pV++;
        scryptBlockMix(X, T, r);
    }
    /* Convert output to little endian */
    for (i = 0, pB = B; i < 32 * r; i++) {
        uint32_t xtmp = X[i];
        *pB++ = xtmp & 0xff;
        *pB++ = (xtmp >> 8) & 0xff;
        *pB++ = (xtmp >> 16) & 0xff;
        *pB++ = (xtmp >> 24) & 0xff;
    }
}

#ifndef SIZE_MAX
# define SIZE_MAX    ((size_t)-1)
#endif

/*
 * Maximum power of two that will fit in uint64_t: this should work on
 * most (all?) platforms.
 */

#define LOG2_UINT64_MAX         (sizeof(uint64_t) * 8 - 1)

/*
 * Maximum value of p * r:
 * p <= ((2^32-1) * hLen) / MFLen =>
 * p <= ((2^32-1) * 32) / (128 * r) =>
 * p * r <= (2^30-1)
 *
 */

#define SCRYPT_PR_MAX   ((1 << 30) - 1)

/*
 * Maximum permitted memory allow this to be overridden with Configuration
 * option: e.g. -DSCRYPT_MAX_MEM=0 for maximum possible.
 */

#ifdef SCRYPT_MAX_MEM
# if SCRYPT_MAX_MEM == 0
#  undef SCRYPT_MAX_MEM
/*
 * Although we could theoretically allocate SIZE_MAX memory that would leave
 * no memory available for anything else so set limit as half that.
 */
#  define SCRYPT_MAX_MEM (SIZE_MAX/2)
# endif
#else
/* Default memory limit: 32 MB */
# define SCRYPT_MAX_MEM  (1024 * 1024 * 32)
#endif

int EVP_PBE_scrypt(const char *pass, size_t passlen,
                   const unsigned char *salt, size_t saltlen,
                   uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem,
                   unsigned char *key, size_t keylen)
{
    int rv = 0;
    unsigned char *B;
    uint32_t *X, *V, *T;
    uint64_t i, Blen, Vlen;
    size_t allocsize;

    /* Sanity check parameters */
    /* initial check, r,p must be non zero, N >= 2 and a power of 2 */
    if (r == 0 || p == 0 || N < 2 || (N & (N - 1)))
        return 0;
    /* Check p * r < SCRYPT_PR_MAX avoiding overflow */
    if (p > SCRYPT_PR_MAX / r)
        return 0;

    /*
     * Need to check N: if 2^(128 * r / 8) overflows limit this is
     * automatically satisfied since N <= UINT64_MAX.
     */

    if (16 * r <= LOG2_UINT64_MAX) {
        if (N >= (((uint64_t)1) << (16 * r)))
            return 0;
    }

    /* Memory checks: check total allocated buffer size fits in uint64_t */

    /*
     * B size in section 5 step 1.S
     * Note: we know p * 128 * r < UINT64_MAX because we already checked
     * p * r < SCRYPT_PR_MAX
     */
    Blen = p * 128 * r;

    /*
     * Check 32 * r * (N + 2) * sizeof(uint32_t) fits in
     * uint64_t and also size_t (their sizes are unrelated).
     * This is combined size V, X and T (section 4)
     */
    i = UINT64_MAX / (32 * sizeof(uint32_t));
    if (N + 2 > i / r)
        return 0;
    Vlen = 32 * r * (N + 2) * sizeof(uint32_t);

    /* check total allocated size fits in uint64_t */
    if (Blen > UINT64_MAX - Vlen)
        return 0;
    /* check total allocated size fits in size_t */
    if (Blen > SIZE_MAX - Vlen)
        return 0;

    allocsize = (size_t)(Blen + Vlen);

    if (maxmem == 0)
        maxmem = SCRYPT_MAX_MEM;

    if (allocsize > maxmem) {
        EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED);
        return 0;
    }

    /* If no key return to indicate parameters are OK */
    if (key == NULL)
        return 1;

    B = OPENSSL_malloc(allocsize);
    if (B == NULL)
        return 0;
    X = (uint32_t *)(B + Blen);
    T = X + 32 * r;
    V = T + 32 * r;
    if (PKCS5_PBKDF2_HMAC(pass, passlen, salt, saltlen, 1, EVP_sha256(),
                          Blen, B) == 0)
        goto err;

    for (i = 0; i < p; i++)
        scryptROMix(B + 128 * r * i, r, N, X, T, V);

    if (PKCS5_PBKDF2_HMAC(pass, passlen, B, Blen, 1, EVP_sha256(),
                          keylen, key) == 0)
        goto err;
    rv = 1;
 err:
    OPENSSL_clear_free(B, allocsize);
    return rv;
}
#endif