aboutsummaryrefslogtreecommitdiff
path: root/openssl-1.1.0h/crypto/modes/asm/ghash-s390x.pl
diff options
context:
space:
mode:
Diffstat (limited to 'openssl-1.1.0h/crypto/modes/asm/ghash-s390x.pl')
-rw-r--r--openssl-1.1.0h/crypto/modes/asm/ghash-s390x.pl258
1 files changed, 258 insertions, 0 deletions
diff --git a/openssl-1.1.0h/crypto/modes/asm/ghash-s390x.pl b/openssl-1.1.0h/crypto/modes/asm/ghash-s390x.pl
new file mode 100644
index 0000000..6e628d8
--- /dev/null
+++ b/openssl-1.1.0h/crypto/modes/asm/ghash-s390x.pl
@@ -0,0 +1,258 @@
+#! /usr/bin/env perl
+# Copyright 2010-2016 The OpenSSL Project Authors. All Rights Reserved.
+#
+# Licensed under the OpenSSL license (the "License"). You may not use
+# this file except in compliance with the License. You can obtain a copy
+# in the file LICENSE in the source distribution or at
+# https://www.openssl.org/source/license.html
+
+
+# ====================================================================
+# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
+# project. The module is, however, dual licensed under OpenSSL and
+# CRYPTOGAMS licenses depending on where you obtain it. For further
+# details see http://www.openssl.org/~appro/cryptogams/.
+# ====================================================================
+
+# September 2010.
+#
+# The module implements "4-bit" GCM GHASH function and underlying
+# single multiplication operation in GF(2^128). "4-bit" means that it
+# uses 256 bytes per-key table [+128 bytes shared table]. Performance
+# was measured to be ~18 cycles per processed byte on z10, which is
+# almost 40% better than gcc-generated code. It should be noted that
+# 18 cycles is worse result than expected: loop is scheduled for 12
+# and the result should be close to 12. In the lack of instruction-
+# level profiling data it's impossible to tell why...
+
+# November 2010.
+#
+# Adapt for -m31 build. If kernel supports what's called "highgprs"
+# feature on Linux [see /proc/cpuinfo], it's possible to use 64-bit
+# instructions and achieve "64-bit" performance even in 31-bit legacy
+# application context. The feature is not specific to any particular
+# processor, as long as it's "z-CPU". Latter implies that the code
+# remains z/Architecture specific. On z990 it was measured to perform
+# 2.8x better than 32-bit code generated by gcc 4.3.
+
+# March 2011.
+#
+# Support for hardware KIMD-GHASH is verified to produce correct
+# result and therefore is engaged. On z196 it was measured to process
+# 8KB buffer ~7 faster than software implementation. It's not as
+# impressive for smaller buffer sizes and for smallest 16-bytes buffer
+# it's actually almost 2 times slower. Which is the reason why
+# KIMD-GHASH is not used in gcm_gmult_4bit.
+
+$flavour = shift;
+
+if ($flavour =~ /3[12]/) {
+ $SIZE_T=4;
+ $g="";
+} else {
+ $SIZE_T=8;
+ $g="g";
+}
+
+while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {}
+open STDOUT,">$output";
+
+$softonly=0;
+
+$Zhi="%r0";
+$Zlo="%r1";
+
+$Xi="%r2"; # argument block
+$Htbl="%r3";
+$inp="%r4";
+$len="%r5";
+
+$rem0="%r6"; # variables
+$rem1="%r7";
+$nlo="%r8";
+$nhi="%r9";
+$xi="%r10";
+$cnt="%r11";
+$tmp="%r12";
+$x78="%r13";
+$rem_4bit="%r14";
+
+$sp="%r15";
+
+$code.=<<___;
+.text
+
+.globl gcm_gmult_4bit
+.align 32
+gcm_gmult_4bit:
+___
+$code.=<<___ if(!$softonly && 0); # hardware is slow for single block...
+ larl %r1,OPENSSL_s390xcap_P
+ lghi %r0,0
+ lg %r1,24(%r1) # load second word of kimd capabilities vector
+ tmhh %r1,0x4000 # check for function 65
+ jz .Lsoft_gmult
+ stg %r0,16($sp) # arrange 16 bytes of zero input
+ stg %r0,24($sp)
+ lghi %r0,65 # function 65
+ la %r1,0($Xi) # H lies right after Xi in gcm128_context
+ la $inp,16($sp)
+ lghi $len,16
+ .long 0xb93e0004 # kimd %r0,$inp
+ brc 1,.-4 # pay attention to "partial completion"
+ br %r14
+.align 32
+.Lsoft_gmult:
+___
+$code.=<<___;
+ stm${g} %r6,%r14,6*$SIZE_T($sp)
+
+ aghi $Xi,-1
+ lghi $len,1
+ lghi $x78,`0xf<<3`
+ larl $rem_4bit,rem_4bit
+
+ lg $Zlo,8+1($Xi) # Xi
+ j .Lgmult_shortcut
+.type gcm_gmult_4bit,\@function
+.size gcm_gmult_4bit,(.-gcm_gmult_4bit)
+
+.globl gcm_ghash_4bit
+.align 32
+gcm_ghash_4bit:
+___
+$code.=<<___ if(!$softonly);
+ larl %r1,OPENSSL_s390xcap_P
+ lg %r0,24(%r1) # load second word of kimd capabilities vector
+ tmhh %r0,0x4000 # check for function 65
+ jz .Lsoft_ghash
+ lghi %r0,65 # function 65
+ la %r1,0($Xi) # H lies right after Xi in gcm128_context
+ .long 0xb93e0004 # kimd %r0,$inp
+ brc 1,.-4 # pay attention to "partial completion"
+ br %r14
+.align 32
+.Lsoft_ghash:
+___
+$code.=<<___ if ($flavour =~ /3[12]/);
+ llgfr $len,$len
+___
+$code.=<<___;
+ stm${g} %r6,%r14,6*$SIZE_T($sp)
+
+ aghi $Xi,-1
+ srlg $len,$len,4
+ lghi $x78,`0xf<<3`
+ larl $rem_4bit,rem_4bit
+
+ lg $Zlo,8+1($Xi) # Xi
+ lg $Zhi,0+1($Xi)
+ lghi $tmp,0
+.Louter:
+ xg $Zhi,0($inp) # Xi ^= inp
+ xg $Zlo,8($inp)
+ xgr $Zhi,$tmp
+ stg $Zlo,8+1($Xi)
+ stg $Zhi,0+1($Xi)
+
+.Lgmult_shortcut:
+ lghi $tmp,0xf0
+ sllg $nlo,$Zlo,4
+ srlg $xi,$Zlo,8 # extract second byte
+ ngr $nlo,$tmp
+ lgr $nhi,$Zlo
+ lghi $cnt,14
+ ngr $nhi,$tmp
+
+ lg $Zlo,8($nlo,$Htbl)
+ lg $Zhi,0($nlo,$Htbl)
+
+ sllg $nlo,$xi,4
+ sllg $rem0,$Zlo,3
+ ngr $nlo,$tmp
+ ngr $rem0,$x78
+ ngr $xi,$tmp
+
+ sllg $tmp,$Zhi,60
+ srlg $Zlo,$Zlo,4
+ srlg $Zhi,$Zhi,4
+ xg $Zlo,8($nhi,$Htbl)
+ xg $Zhi,0($nhi,$Htbl)
+ lgr $nhi,$xi
+ sllg $rem1,$Zlo,3
+ xgr $Zlo,$tmp
+ ngr $rem1,$x78
+ sllg $tmp,$Zhi,60
+ j .Lghash_inner
+.align 16
+.Lghash_inner:
+ srlg $Zlo,$Zlo,4
+ srlg $Zhi,$Zhi,4
+ xg $Zlo,8($nlo,$Htbl)
+ llgc $xi,0($cnt,$Xi)
+ xg $Zhi,0($nlo,$Htbl)
+ sllg $nlo,$xi,4
+ xg $Zhi,0($rem0,$rem_4bit)
+ nill $nlo,0xf0
+ sllg $rem0,$Zlo,3
+ xgr $Zlo,$tmp
+ ngr $rem0,$x78
+ nill $xi,0xf0
+
+ sllg $tmp,$Zhi,60
+ srlg $Zlo,$Zlo,4
+ srlg $Zhi,$Zhi,4
+ xg $Zlo,8($nhi,$Htbl)
+ xg $Zhi,0($nhi,$Htbl)
+ lgr $nhi,$xi
+ xg $Zhi,0($rem1,$rem_4bit)
+ sllg $rem1,$Zlo,3
+ xgr $Zlo,$tmp
+ ngr $rem1,$x78
+ sllg $tmp,$Zhi,60
+ brct $cnt,.Lghash_inner
+
+ srlg $Zlo,$Zlo,4
+ srlg $Zhi,$Zhi,4
+ xg $Zlo,8($nlo,$Htbl)
+ xg $Zhi,0($nlo,$Htbl)
+ sllg $xi,$Zlo,3
+ xg $Zhi,0($rem0,$rem_4bit)
+ xgr $Zlo,$tmp
+ ngr $xi,$x78
+
+ sllg $tmp,$Zhi,60
+ srlg $Zlo,$Zlo,4
+ srlg $Zhi,$Zhi,4
+ xg $Zlo,8($nhi,$Htbl)
+ xg $Zhi,0($nhi,$Htbl)
+ xgr $Zlo,$tmp
+ xg $Zhi,0($rem1,$rem_4bit)
+
+ lg $tmp,0($xi,$rem_4bit)
+ la $inp,16($inp)
+ sllg $tmp,$tmp,4 # correct last rem_4bit[rem]
+ brctg $len,.Louter
+
+ xgr $Zhi,$tmp
+ stg $Zlo,8+1($Xi)
+ stg $Zhi,0+1($Xi)
+ lm${g} %r6,%r14,6*$SIZE_T($sp)
+ br %r14
+.type gcm_ghash_4bit,\@function
+.size gcm_ghash_4bit,(.-gcm_ghash_4bit)
+
+.align 64
+rem_4bit:
+ .long `0x0000<<12`,0,`0x1C20<<12`,0,`0x3840<<12`,0,`0x2460<<12`,0
+ .long `0x7080<<12`,0,`0x6CA0<<12`,0,`0x48C0<<12`,0,`0x54E0<<12`,0
+ .long `0xE100<<12`,0,`0xFD20<<12`,0,`0xD940<<12`,0,`0xC560<<12`,0
+ .long `0x9180<<12`,0,`0x8DA0<<12`,0,`0xA9C0<<12`,0,`0xB5E0<<12`,0
+.type rem_4bit,\@object
+.size rem_4bit,(.-rem_4bit)
+.string "GHASH for s390x, CRYPTOGAMS by <appro\@openssl.org>"
+___
+
+$code =~ s/\`([^\`]*)\`/eval $1/gem;
+print $code;
+close STDOUT;