aboutsummaryrefslogtreecommitdiff
path: root/openssl-1.1.0h/crypto/ec/asm/ecp_nistz256-x86.pl
diff options
context:
space:
mode:
Diffstat (limited to 'openssl-1.1.0h/crypto/ec/asm/ecp_nistz256-x86.pl')
-rwxr-xr-xopenssl-1.1.0h/crypto/ec/asm/ecp_nistz256-x86.pl1866
1 files changed, 1866 insertions, 0 deletions
diff --git a/openssl-1.1.0h/crypto/ec/asm/ecp_nistz256-x86.pl b/openssl-1.1.0h/crypto/ec/asm/ecp_nistz256-x86.pl
new file mode 100755
index 0000000..1d9e006
--- /dev/null
+++ b/openssl-1.1.0h/crypto/ec/asm/ecp_nistz256-x86.pl
@@ -0,0 +1,1866 @@
+#! /usr/bin/env perl
+# Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved.
+#
+# Licensed under the OpenSSL license (the "License"). You may not use
+# this file except in compliance with the License. You can obtain a copy
+# in the file LICENSE in the source distribution or at
+# https://www.openssl.org/source/license.html
+
+
+# ====================================================================
+# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
+# project. The module is, however, dual licensed under OpenSSL and
+# CRYPTOGAMS licenses depending on where you obtain it. For further
+# details see http://www.openssl.org/~appro/cryptogams/.
+# ====================================================================
+#
+# ECP_NISTZ256 module for x86/SSE2.
+#
+# October 2014.
+#
+# Original ECP_NISTZ256 submission targeting x86_64 is detailed in
+# http://eprint.iacr.org/2013/816. In the process of adaptation
+# original .c module was made 32-bit savvy in order to make this
+# implementation possible.
+#
+# with/without -DECP_NISTZ256_ASM
+# Pentium +66-163%
+# PIII +72-172%
+# P4 +65-132%
+# Core2 +90-215%
+# Sandy Bridge +105-265% (contemporary i[57]-* are all close to this)
+# Atom +65-155%
+# Opteron +54-110%
+# Bulldozer +99-240%
+# VIA Nano +93-290%
+#
+# Ranges denote minimum and maximum improvement coefficients depending
+# on benchmark. Lower coefficients are for ECDSA sign, server-side
+# operation. Keep in mind that +200% means 3x improvement.
+
+$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
+push(@INC,"${dir}","${dir}../../perlasm");
+require "x86asm.pl";
+
+$output=pop;
+open STDOUT,">$output";
+
+&asm_init($ARGV[0],"ecp_nistz256-x86.pl",$ARGV[$#ARGV] eq "386");
+
+$sse2=0;
+for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); }
+
+&external_label("OPENSSL_ia32cap_P") if ($sse2);
+
+
+########################################################################
+# Convert ecp_nistz256_table.c to layout expected by ecp_nistz_gather_w7
+#
+open TABLE,"<ecp_nistz256_table.c" or
+open TABLE,"<${dir}../ecp_nistz256_table.c" or
+die "failed to open ecp_nistz256_table.c:",$!;
+
+use integer;
+
+foreach(<TABLE>) {
+ s/TOBN\(\s*(0x[0-9a-f]+),\s*(0x[0-9a-f]+)\s*\)/push @arr,hex($2),hex($1)/geo;
+}
+close TABLE;
+
+# See ecp_nistz256_table.c for explanation for why it's 64*16*37.
+# 64*16*37-1 is because $#arr returns last valid index or @arr, not
+# amount of elements.
+die "insane number of elements" if ($#arr != 64*16*37-1);
+
+&public_label("ecp_nistz256_precomputed");
+&align(4096);
+&set_label("ecp_nistz256_precomputed");
+
+########################################################################
+# this conversion smashes P256_POINT_AFFINE by individual bytes with
+# 64 byte interval, similar to
+# 1111222233334444
+# 1234123412341234
+for(1..37) {
+ @tbl = splice(@arr,0,64*16);
+ for($i=0;$i<64;$i++) {
+ undef @line;
+ for($j=0;$j<64;$j++) {
+ push @line,(@tbl[$j*16+$i/4]>>(($i%4)*8))&0xff;
+ }
+ &data_byte(join(',',map { sprintf "0x%02x",$_} @line));
+ }
+}
+
+########################################################################
+# Keep in mind that constants are stored least to most significant word
+&static_label("RR");
+&set_label("RR",64);
+&data_word(3,0,-1,-5,-2,-1,-3,4); # 2^512 mod P-256
+
+&static_label("ONE_mont");
+&set_label("ONE_mont");
+&data_word(1,0,0,-1,-1,-1,-2,0);
+
+&static_label("ONE");
+&set_label("ONE");
+&data_word(1,0,0,0,0,0,0,0);
+&asciz("ECP_NISZ256 for x86/SSE2, CRYPTOGAMS by <appro\@openssl.org>");
+&align(64);
+
+########################################################################
+# void ecp_nistz256_mul_by_2(BN_ULONG edi[8],const BN_ULONG esi[8]);
+&function_begin("ecp_nistz256_mul_by_2");
+ &mov ("esi",&wparam(1));
+ &mov ("edi",&wparam(0));
+ &mov ("ebp","esi");
+########################################################################
+# common pattern for internal functions is that %edi is result pointer,
+# %esi and %ebp are input ones, %ebp being optional. %edi is preserved.
+ &call ("_ecp_nistz256_add");
+&function_end("ecp_nistz256_mul_by_2");
+
+########################################################################
+# void ecp_nistz256_mul_by_3(BN_ULONG edi[8],const BN_ULONG esi[8]);
+&function_begin("ecp_nistz256_mul_by_3");
+ &mov ("esi",&wparam(1));
+ # multiplication by 3 is performed
+ # as 2*n+n, but we can't use output
+ # to store 2*n, because if output
+ # pointer equals to input, then
+ # we'll get 2*n+2*n.
+ &stack_push(8); # therefore we need to allocate
+ # 256-bit intermediate buffer.
+ &mov ("edi","esp");
+ &mov ("ebp","esi");
+ &call ("_ecp_nistz256_add");
+ &lea ("esi",&DWP(0,"edi"));
+ &mov ("ebp",&wparam(1));
+ &mov ("edi",&wparam(0));
+ &call ("_ecp_nistz256_add");
+ &stack_pop(8);
+&function_end("ecp_nistz256_mul_by_3");
+
+########################################################################
+# void ecp_nistz256_div_by_2(BN_ULONG edi[8],const BN_ULONG esi[8]);
+&function_begin("ecp_nistz256_div_by_2");
+ &mov ("esi",&wparam(1));
+ &mov ("edi",&wparam(0));
+ &call ("_ecp_nistz256_div_by_2");
+&function_end("ecp_nistz256_div_by_2");
+
+&function_begin_B("_ecp_nistz256_div_by_2");
+ # tmp = a is odd ? a+mod : a
+ #
+ # note that because mod has special form, i.e. consists of
+ # 0xffffffff, 1 and 0s, we can conditionally synthesize it by
+ # assigning least significant bit of input to one register,
+ # %ebp, and its negative to another, %edx.
+
+ &mov ("ebp",&DWP(0,"esi"));
+ &xor ("edx","edx");
+ &mov ("ebx",&DWP(4,"esi"));
+ &mov ("eax","ebp");
+ &and ("ebp",1);
+ &mov ("ecx",&DWP(8,"esi"));
+ &sub ("edx","ebp");
+
+ &add ("eax","edx");
+ &adc ("ebx","edx");
+ &mov (&DWP(0,"edi"),"eax");
+ &adc ("ecx","edx");
+ &mov (&DWP(4,"edi"),"ebx");
+ &mov (&DWP(8,"edi"),"ecx");
+
+ &mov ("eax",&DWP(12,"esi"));
+ &mov ("ebx",&DWP(16,"esi"));
+ &adc ("eax",0);
+ &mov ("ecx",&DWP(20,"esi"));
+ &adc ("ebx",0);
+ &mov (&DWP(12,"edi"),"eax");
+ &adc ("ecx",0);
+ &mov (&DWP(16,"edi"),"ebx");
+ &mov (&DWP(20,"edi"),"ecx");
+
+ &mov ("eax",&DWP(24,"esi"));
+ &mov ("ebx",&DWP(28,"esi"));
+ &adc ("eax","ebp");
+ &adc ("ebx","edx");
+ &mov (&DWP(24,"edi"),"eax");
+ &sbb ("esi","esi"); # broadcast carry bit
+ &mov (&DWP(28,"edi"),"ebx");
+
+ # ret = tmp >> 1
+
+ &mov ("eax",&DWP(0,"edi"));
+ &mov ("ebx",&DWP(4,"edi"));
+ &mov ("ecx",&DWP(8,"edi"));
+ &mov ("edx",&DWP(12,"edi"));
+
+ &shr ("eax",1);
+ &mov ("ebp","ebx");
+ &shl ("ebx",31);
+ &or ("eax","ebx");
+
+ &shr ("ebp",1);
+ &mov ("ebx","ecx");
+ &shl ("ecx",31);
+ &mov (&DWP(0,"edi"),"eax");
+ &or ("ebp","ecx");
+ &mov ("eax",&DWP(16,"edi"));
+
+ &shr ("ebx",1);
+ &mov ("ecx","edx");
+ &shl ("edx",31);
+ &mov (&DWP(4,"edi"),"ebp");
+ &or ("ebx","edx");
+ &mov ("ebp",&DWP(20,"edi"));
+
+ &shr ("ecx",1);
+ &mov ("edx","eax");
+ &shl ("eax",31);
+ &mov (&DWP(8,"edi"),"ebx");
+ &or ("ecx","eax");
+ &mov ("ebx",&DWP(24,"edi"));
+
+ &shr ("edx",1);
+ &mov ("eax","ebp");
+ &shl ("ebp",31);
+ &mov (&DWP(12,"edi"),"ecx");
+ &or ("edx","ebp");
+ &mov ("ecx",&DWP(28,"edi"));
+
+ &shr ("eax",1);
+ &mov ("ebp","ebx");
+ &shl ("ebx",31);
+ &mov (&DWP(16,"edi"),"edx");
+ &or ("eax","ebx");
+
+ &shr ("ebp",1);
+ &mov ("ebx","ecx");
+ &shl ("ecx",31);
+ &mov (&DWP(20,"edi"),"eax");
+ &or ("ebp","ecx");
+
+ &shr ("ebx",1);
+ &shl ("esi",31);
+ &mov (&DWP(24,"edi"),"ebp");
+ &or ("ebx","esi"); # handle top-most carry bit
+ &mov (&DWP(28,"edi"),"ebx");
+
+ &ret ();
+&function_end_B("_ecp_nistz256_div_by_2");
+
+########################################################################
+# void ecp_nistz256_add(BN_ULONG edi[8],const BN_ULONG esi[8],
+# const BN_ULONG ebp[8]);
+&function_begin("ecp_nistz256_add");
+ &mov ("esi",&wparam(1));
+ &mov ("ebp",&wparam(2));
+ &mov ("edi",&wparam(0));
+ &call ("_ecp_nistz256_add");
+&function_end("ecp_nistz256_add");
+
+&function_begin_B("_ecp_nistz256_add");
+ &mov ("eax",&DWP(0,"esi"));
+ &mov ("ebx",&DWP(4,"esi"));
+ &mov ("ecx",&DWP(8,"esi"));
+ &add ("eax",&DWP(0,"ebp"));
+ &mov ("edx",&DWP(12,"esi"));
+ &adc ("ebx",&DWP(4,"ebp"));
+ &mov (&DWP(0,"edi"),"eax");
+ &adc ("ecx",&DWP(8,"ebp"));
+ &mov (&DWP(4,"edi"),"ebx");
+ &adc ("edx",&DWP(12,"ebp"));
+ &mov (&DWP(8,"edi"),"ecx");
+ &mov (&DWP(12,"edi"),"edx");
+
+ &mov ("eax",&DWP(16,"esi"));
+ &mov ("ebx",&DWP(20,"esi"));
+ &mov ("ecx",&DWP(24,"esi"));
+ &adc ("eax",&DWP(16,"ebp"));
+ &mov ("edx",&DWP(28,"esi"));
+ &adc ("ebx",&DWP(20,"ebp"));
+ &mov (&DWP(16,"edi"),"eax");
+ &adc ("ecx",&DWP(24,"ebp"));
+ &mov (&DWP(20,"edi"),"ebx");
+ &mov ("esi",0);
+ &adc ("edx",&DWP(28,"ebp"));
+ &mov (&DWP(24,"edi"),"ecx");
+ &adc ("esi",0);
+ &mov (&DWP(28,"edi"),"edx");
+
+ # if a+b >= modulus, subtract modulus.
+ #
+ # But since comparison implies subtraction, we subtract modulus
+ # to see if it borrows, and then subtract it for real if
+ # subtraction didn't borrow.
+
+ &mov ("eax",&DWP(0,"edi"));
+ &mov ("ebx",&DWP(4,"edi"));
+ &mov ("ecx",&DWP(8,"edi"));
+ &sub ("eax",-1);
+ &mov ("edx",&DWP(12,"edi"));
+ &sbb ("ebx",-1);
+ &mov ("eax",&DWP(16,"edi"));
+ &sbb ("ecx",-1);
+ &mov ("ebx",&DWP(20,"edi"));
+ &sbb ("edx",0);
+ &mov ("ecx",&DWP(24,"edi"));
+ &sbb ("eax",0);
+ &mov ("edx",&DWP(28,"edi"));
+ &sbb ("ebx",0);
+ &sbb ("ecx",1);
+ &sbb ("edx",-1);
+ &sbb ("esi",0);
+
+ # Note that because mod has special form, i.e. consists of
+ # 0xffffffff, 1 and 0s, we can conditionally synthesize it by
+ # by using borrow.
+
+ &not ("esi");
+ &mov ("eax",&DWP(0,"edi"));
+ &mov ("ebp","esi");
+ &mov ("ebx",&DWP(4,"edi"));
+ &shr ("ebp",31);
+ &mov ("ecx",&DWP(8,"edi"));
+ &sub ("eax","esi");
+ &mov ("edx",&DWP(12,"edi"));
+ &sbb ("ebx","esi");
+ &mov (&DWP(0,"edi"),"eax");
+ &sbb ("ecx","esi");
+ &mov (&DWP(4,"edi"),"ebx");
+ &sbb ("edx",0);
+ &mov (&DWP(8,"edi"),"ecx");
+ &mov (&DWP(12,"edi"),"edx");
+
+ &mov ("eax",&DWP(16,"edi"));
+ &mov ("ebx",&DWP(20,"edi"));
+ &mov ("ecx",&DWP(24,"edi"));
+ &sbb ("eax",0);
+ &mov ("edx",&DWP(28,"edi"));
+ &sbb ("ebx",0);
+ &mov (&DWP(16,"edi"),"eax");
+ &sbb ("ecx","ebp");
+ &mov (&DWP(20,"edi"),"ebx");
+ &sbb ("edx","esi");
+ &mov (&DWP(24,"edi"),"ecx");
+ &mov (&DWP(28,"edi"),"edx");
+
+ &ret ();
+&function_end_B("_ecp_nistz256_add");
+
+########################################################################
+# void ecp_nistz256_sub(BN_ULONG edi[8],const BN_ULONG esi[8],
+# const BN_ULONG ebp[8]);
+&function_begin("ecp_nistz256_sub");
+ &mov ("esi",&wparam(1));
+ &mov ("ebp",&wparam(2));
+ &mov ("edi",&wparam(0));
+ &call ("_ecp_nistz256_sub");
+&function_end("ecp_nistz256_sub");
+
+&function_begin_B("_ecp_nistz256_sub");
+ &mov ("eax",&DWP(0,"esi"));
+ &mov ("ebx",&DWP(4,"esi"));
+ &mov ("ecx",&DWP(8,"esi"));
+ &sub ("eax",&DWP(0,"ebp"));
+ &mov ("edx",&DWP(12,"esi"));
+ &sbb ("ebx",&DWP(4,"ebp"));
+ &mov (&DWP(0,"edi"),"eax");
+ &sbb ("ecx",&DWP(8,"ebp"));
+ &mov (&DWP(4,"edi"),"ebx");
+ &sbb ("edx",&DWP(12,"ebp"));
+ &mov (&DWP(8,"edi"),"ecx");
+ &mov (&DWP(12,"edi"),"edx");
+
+ &mov ("eax",&DWP(16,"esi"));
+ &mov ("ebx",&DWP(20,"esi"));
+ &mov ("ecx",&DWP(24,"esi"));
+ &sbb ("eax",&DWP(16,"ebp"));
+ &mov ("edx",&DWP(28,"esi"));
+ &sbb ("ebx",&DWP(20,"ebp"));
+ &sbb ("ecx",&DWP(24,"ebp"));
+ &mov (&DWP(16,"edi"),"eax");
+ &sbb ("edx",&DWP(28,"ebp"));
+ &mov (&DWP(20,"edi"),"ebx");
+ &sbb ("esi","esi"); # broadcast borrow bit
+ &mov (&DWP(24,"edi"),"ecx");
+ &mov (&DWP(28,"edi"),"edx");
+
+ # if a-b borrows, add modulus.
+ #
+ # Note that because mod has special form, i.e. consists of
+ # 0xffffffff, 1 and 0s, we can conditionally synthesize it by
+ # assigning borrow bit to one register, %ebp, and its negative
+ # to another, %esi. But we started by calculating %esi...
+
+ &mov ("eax",&DWP(0,"edi"));
+ &mov ("ebp","esi");
+ &mov ("ebx",&DWP(4,"edi"));
+ &shr ("ebp",31);
+ &mov ("ecx",&DWP(8,"edi"));
+ &add ("eax","esi");
+ &mov ("edx",&DWP(12,"edi"));
+ &adc ("ebx","esi");
+ &mov (&DWP(0,"edi"),"eax");
+ &adc ("ecx","esi");
+ &mov (&DWP(4,"edi"),"ebx");
+ &adc ("edx",0);
+ &mov (&DWP(8,"edi"),"ecx");
+ &mov (&DWP(12,"edi"),"edx");
+
+ &mov ("eax",&DWP(16,"edi"));
+ &mov ("ebx",&DWP(20,"edi"));
+ &mov ("ecx",&DWP(24,"edi"));
+ &adc ("eax",0);
+ &mov ("edx",&DWP(28,"edi"));
+ &adc ("ebx",0);
+ &mov (&DWP(16,"edi"),"eax");
+ &adc ("ecx","ebp");
+ &mov (&DWP(20,"edi"),"ebx");
+ &adc ("edx","esi");
+ &mov (&DWP(24,"edi"),"ecx");
+ &mov (&DWP(28,"edi"),"edx");
+
+ &ret ();
+&function_end_B("_ecp_nistz256_sub");
+
+########################################################################
+# void ecp_nistz256_neg(BN_ULONG edi[8],const BN_ULONG esi[8]);
+&function_begin("ecp_nistz256_neg");
+ &mov ("ebp",&wparam(1));
+ &mov ("edi",&wparam(0));
+
+ &xor ("eax","eax");
+ &stack_push(8);
+ &mov (&DWP(0,"esp"),"eax");
+ &mov ("esi","esp");
+ &mov (&DWP(4,"esp"),"eax");
+ &mov (&DWP(8,"esp"),"eax");
+ &mov (&DWP(12,"esp"),"eax");
+ &mov (&DWP(16,"esp"),"eax");
+ &mov (&DWP(20,"esp"),"eax");
+ &mov (&DWP(24,"esp"),"eax");
+ &mov (&DWP(28,"esp"),"eax");
+
+ &call ("_ecp_nistz256_sub");
+
+ &stack_pop(8);
+&function_end("ecp_nistz256_neg");
+
+&function_begin_B("_picup_eax");
+ &mov ("eax",&DWP(0,"esp"));
+ &ret ();
+&function_end_B("_picup_eax");
+
+########################################################################
+# void ecp_nistz256_to_mont(BN_ULONG edi[8],const BN_ULONG esi[8]);
+&function_begin("ecp_nistz256_to_mont");
+ &mov ("esi",&wparam(1));
+ &call ("_picup_eax");
+ &set_label("pic");
+ &lea ("ebp",&DWP(&label("RR")."-".&label("pic"),"eax"));
+ if ($sse2) {
+ &picmeup("eax","OPENSSL_ia32cap_P","eax",&label("pic"));
+ &mov ("eax",&DWP(0,"eax")); }
+ &mov ("edi",&wparam(0));
+ &call ("_ecp_nistz256_mul_mont");
+&function_end("ecp_nistz256_to_mont");
+
+########################################################################
+# void ecp_nistz256_from_mont(BN_ULONG edi[8],const BN_ULONG esi[8]);
+&function_begin("ecp_nistz256_from_mont");
+ &mov ("esi",&wparam(1));
+ &call ("_picup_eax");
+ &set_label("pic");
+ &lea ("ebp",&DWP(&label("ONE")."-".&label("pic"),"eax"));
+ if ($sse2) {
+ &picmeup("eax","OPENSSL_ia32cap_P","eax",&label("pic"));
+ &mov ("eax",&DWP(0,"eax")); }
+ &mov ("edi",&wparam(0));
+ &call ("_ecp_nistz256_mul_mont");
+&function_end("ecp_nistz256_from_mont");
+
+########################################################################
+# void ecp_nistz256_mul_mont(BN_ULONG edi[8],const BN_ULONG esi[8],
+# const BN_ULONG ebp[8]);
+&function_begin("ecp_nistz256_mul_mont");
+ &mov ("esi",&wparam(1));
+ &mov ("ebp",&wparam(2));
+ if ($sse2) {
+ &call ("_picup_eax");
+ &set_label("pic");
+ &picmeup("eax","OPENSSL_ia32cap_P","eax",&label("pic"));
+ &mov ("eax",&DWP(0,"eax")); }
+ &mov ("edi",&wparam(0));
+ &call ("_ecp_nistz256_mul_mont");
+&function_end("ecp_nistz256_mul_mont");
+
+########################################################################
+# void ecp_nistz256_sqr_mont(BN_ULONG edi[8],const BN_ULONG esi[8]);
+&function_begin("ecp_nistz256_sqr_mont");
+ &mov ("esi",&wparam(1));
+ if ($sse2) {
+ &call ("_picup_eax");
+ &set_label("pic");
+ &picmeup("eax","OPENSSL_ia32cap_P","eax",&label("pic"));
+ &mov ("eax",&DWP(0,"eax")); }
+ &mov ("edi",&wparam(0));
+ &mov ("ebp","esi");
+ &call ("_ecp_nistz256_mul_mont");
+&function_end("ecp_nistz256_sqr_mont");
+
+&function_begin_B("_ecp_nistz256_mul_mont");
+ if ($sse2) {
+ &and ("eax",1<<24|1<<26);
+ &cmp ("eax",1<<24|1<<26); # see if XMM+SSE2 is on
+ &jne (&label("mul_mont_ialu"));
+
+ ########################################
+ # SSE2 code path featuring 32x16-bit
+ # multiplications is ~2x faster than
+ # IALU counterpart (except on Atom)...
+ ########################################
+ # stack layout:
+ # +------------------------------------+< %esp
+ # | 7 16-byte temporary XMM words, |
+ # | "sliding" toward lower address |
+ # . .
+ # +------------------------------------+
+ # | unused XMM word |
+ # +------------------------------------+< +128,%ebx
+ # | 8 16-byte XMM words holding copies |
+ # | of a[i]<<64|a[i] |
+ # . .
+ # . .
+ # +------------------------------------+< +256
+ &mov ("edx","esp");
+ &sub ("esp",0x100);
+
+ &movd ("xmm7",&DWP(0,"ebp")); # b[0] -> 0000.00xy
+ &lea ("ebp",&DWP(4,"ebp"));
+ &pcmpeqd("xmm6","xmm6");
+ &psrlq ("xmm6",48); # compose 0xffff<<64|0xffff
+
+ &pshuflw("xmm7","xmm7",0b11011100); # 0000.00xy -> 0000.0x0y
+ &and ("esp",-64);
+ &pshufd ("xmm7","xmm7",0b11011100); # 0000.0x0y -> 000x.000y
+ &lea ("ebx",&DWP(0x80,"esp"));
+
+ &movd ("xmm0",&DWP(4*0,"esi")); # a[0] -> 0000.00xy
+ &pshufd ("xmm0","xmm0",0b11001100); # 0000.00xy -> 00xy.00xy
+ &movd ("xmm1",&DWP(4*1,"esi")); # a[1] -> ...
+ &movdqa (&QWP(0x00,"ebx"),"xmm0"); # offload converted a[0]
+ &pmuludq("xmm0","xmm7"); # a[0]*b[0]
+
+ &movd ("xmm2",&DWP(4*2,"esi"));
+ &pshufd ("xmm1","xmm1",0b11001100);
+ &movdqa (&QWP(0x10,"ebx"),"xmm1");
+ &pmuludq("xmm1","xmm7"); # a[1]*b[0]
+
+ &movq ("xmm4","xmm0"); # clear upper 64 bits
+ &pslldq("xmm4",6);
+ &paddq ("xmm4","xmm0");
+ &movdqa("xmm5","xmm4");
+ &psrldq("xmm4",10); # upper 32 bits of a[0]*b[0]
+ &pand ("xmm5","xmm6"); # lower 32 bits of a[0]*b[0]
+
+ # Upper half of a[0]*b[i] is carried into next multiplication
+ # iteration, while lower one "participates" in actual reduction.
+ # Normally latter is done by accumulating result of multiplication
+ # of modulus by "magic" digit, but thanks to special form of modulus
+ # and "magic" digit it can be performed only with additions and
+ # subtractions (see note in IALU section below). Note that we are
+ # not bothered with carry bits, they are accumulated in "flatten"
+ # phase after all multiplications and reductions.
+
+ &movd ("xmm3",&DWP(4*3,"esi"));
+ &pshufd ("xmm2","xmm2",0b11001100);
+ &movdqa (&QWP(0x20,"ebx"),"xmm2");
+ &pmuludq("xmm2","xmm7"); # a[2]*b[0]
+ &paddq ("xmm1","xmm4"); # a[1]*b[0]+hw(a[0]*b[0]), carry
+ &movdqa (&QWP(0x00,"esp"),"xmm1"); # t[0]
+
+ &movd ("xmm0",&DWP(4*4,"esi"));
+ &pshufd ("xmm3","xmm3",0b11001100);
+ &movdqa (&QWP(0x30,"ebx"),"xmm3");
+ &pmuludq("xmm3","xmm7"); # a[3]*b[0]
+ &movdqa (&QWP(0x10,"esp"),"xmm2");
+
+ &movd ("xmm1",&DWP(4*5,"esi"));
+ &pshufd ("xmm0","xmm0",0b11001100);
+ &movdqa (&QWP(0x40,"ebx"),"xmm0");
+ &pmuludq("xmm0","xmm7"); # a[4]*b[0]
+ &paddq ("xmm3","xmm5"); # a[3]*b[0]+lw(a[0]*b[0]), reduction step
+ &movdqa (&QWP(0x20,"esp"),"xmm3");
+
+ &movd ("xmm2",&DWP(4*6,"esi"));
+ &pshufd ("xmm1","xmm1",0b11001100);
+ &movdqa (&QWP(0x50,"ebx"),"xmm1");
+ &pmuludq("xmm1","xmm7"); # a[5]*b[0]
+ &movdqa (&QWP(0x30,"esp"),"xmm0");
+ &pshufd("xmm4","xmm5",0b10110001); # xmm4 = xmm5<<32, reduction step
+
+ &movd ("xmm3",&DWP(4*7,"esi"));
+ &pshufd ("xmm2","xmm2",0b11001100);
+ &movdqa (&QWP(0x60,"ebx"),"xmm2");
+ &pmuludq("xmm2","xmm7"); # a[6]*b[0]
+ &movdqa (&QWP(0x40,"esp"),"xmm1");
+ &psubq ("xmm4","xmm5"); # xmm4 = xmm5*0xffffffff, reduction step
+
+ &movd ("xmm0",&DWP(0,"ebp")); # b[1] -> 0000.00xy
+ &pshufd ("xmm3","xmm3",0b11001100);
+ &movdqa (&QWP(0x70,"ebx"),"xmm3");
+ &pmuludq("xmm3","xmm7"); # a[7]*b[0]
+
+ &pshuflw("xmm7","xmm0",0b11011100); # 0000.00xy -> 0000.0x0y
+ &movdqa ("xmm0",&QWP(0x00,"ebx")); # pre-load converted a[0]
+ &pshufd ("xmm7","xmm7",0b11011100); # 0000.0x0y -> 000x.000y
+
+ &mov ("ecx",6);
+ &lea ("ebp",&DWP(4,"ebp"));
+ &jmp (&label("madd_sse2"));
+
+&set_label("madd_sse2",16);
+ &paddq ("xmm2","xmm5"); # a[6]*b[i-1]+lw(a[0]*b[i-1]), reduction step [modulo-scheduled]
+ &paddq ("xmm3","xmm4"); # a[7]*b[i-1]+lw(a[0]*b[i-1])*0xffffffff, reduction step [modulo-scheduled]
+ &movdqa ("xmm1",&QWP(0x10,"ebx"));
+ &pmuludq("xmm0","xmm7"); # a[0]*b[i]
+ &movdqa(&QWP(0x50,"esp"),"xmm2");
+
+ &movdqa ("xmm2",&QWP(0x20,"ebx"));
+ &pmuludq("xmm1","xmm7"); # a[1]*b[i]
+ &movdqa(&QWP(0x60,"esp"),"xmm3");
+ &paddq ("xmm0",&QWP(0x00,"esp"));
+
+ &movdqa ("xmm3",&QWP(0x30,"ebx"));
+ &pmuludq("xmm2","xmm7"); # a[2]*b[i]
+ &movq ("xmm4","xmm0"); # clear upper 64 bits
+ &pslldq("xmm4",6);
+ &paddq ("xmm1",&QWP(0x10,"esp"));
+ &paddq ("xmm4","xmm0");
+ &movdqa("xmm5","xmm4");
+ &psrldq("xmm4",10); # upper 33 bits of a[0]*b[i]+t[0]
+
+ &movdqa ("xmm0",&QWP(0x40,"ebx"));
+ &pmuludq("xmm3","xmm7"); # a[3]*b[i]
+ &paddq ("xmm1","xmm4"); # a[1]*b[i]+hw(a[0]*b[i]), carry
+ &paddq ("xmm2",&QWP(0x20,"esp"));
+ &movdqa (&QWP(0x00,"esp"),"xmm1");
+
+ &movdqa ("xmm1",&QWP(0x50,"ebx"));
+ &pmuludq("xmm0","xmm7"); # a[4]*b[i]
+ &paddq ("xmm3",&QWP(0x30,"esp"));
+ &movdqa (&QWP(0x10,"esp"),"xmm2");
+ &pand ("xmm5","xmm6"); # lower 32 bits of a[0]*b[i]
+
+ &movdqa ("xmm2",&QWP(0x60,"ebx"));
+ &pmuludq("xmm1","xmm7"); # a[5]*b[i]
+ &paddq ("xmm3","xmm5"); # a[3]*b[i]+lw(a[0]*b[i]), reduction step
+ &paddq ("xmm0",&QWP(0x40,"esp"));
+ &movdqa (&QWP(0x20,"esp"),"xmm3");
+ &pshufd("xmm4","xmm5",0b10110001); # xmm4 = xmm5<<32, reduction step
+
+ &movdqa ("xmm3","xmm7");
+ &pmuludq("xmm2","xmm7"); # a[6]*b[i]
+ &movd ("xmm7",&DWP(0,"ebp")); # b[i++] -> 0000.00xy
+ &lea ("ebp",&DWP(4,"ebp"));
+ &paddq ("xmm1",&QWP(0x50,"esp"));
+ &psubq ("xmm4","xmm5"); # xmm4 = xmm5*0xffffffff, reduction step
+ &movdqa (&QWP(0x30,"esp"),"xmm0");
+ &pshuflw("xmm7","xmm7",0b11011100); # 0000.00xy -> 0000.0x0y
+
+ &pmuludq("xmm3",&QWP(0x70,"ebx")); # a[7]*b[i]
+ &pshufd("xmm7","xmm7",0b11011100); # 0000.0x0y -> 000x.000y
+ &movdqa("xmm0",&QWP(0x00,"ebx")); # pre-load converted a[0]
+ &movdqa (&QWP(0x40,"esp"),"xmm1");
+ &paddq ("xmm2",&QWP(0x60,"esp"));
+
+ &dec ("ecx");
+ &jnz (&label("madd_sse2"));
+
+ &paddq ("xmm2","xmm5"); # a[6]*b[6]+lw(a[0]*b[6]), reduction step [modulo-scheduled]
+ &paddq ("xmm3","xmm4"); # a[7]*b[6]+lw(a[0]*b[6])*0xffffffff, reduction step [modulo-scheduled]
+ &movdqa ("xmm1",&QWP(0x10,"ebx"));
+ &pmuludq("xmm0","xmm7"); # a[0]*b[7]
+ &movdqa(&QWP(0x50,"esp"),"xmm2");
+
+ &movdqa ("xmm2",&QWP(0x20,"ebx"));
+ &pmuludq("xmm1","xmm7"); # a[1]*b[7]
+ &movdqa(&QWP(0x60,"esp"),"xmm3");
+ &paddq ("xmm0",&QWP(0x00,"esp"));
+
+ &movdqa ("xmm3",&QWP(0x30,"ebx"));
+ &pmuludq("xmm2","xmm7"); # a[2]*b[7]
+ &movq ("xmm4","xmm0"); # clear upper 64 bits
+ &pslldq("xmm4",6);
+ &paddq ("xmm1",&QWP(0x10,"esp"));
+ &paddq ("xmm4","xmm0");
+ &movdqa("xmm5","xmm4");
+ &psrldq("xmm4",10); # upper 33 bits of a[0]*b[i]+t[0]
+
+ &movdqa ("xmm0",&QWP(0x40,"ebx"));
+ &pmuludq("xmm3","xmm7"); # a[3]*b[7]
+ &paddq ("xmm1","xmm4"); # a[1]*b[7]+hw(a[0]*b[7]), carry
+ &paddq ("xmm2",&QWP(0x20,"esp"));
+ &movdqa (&QWP(0x00,"esp"),"xmm1");
+
+ &movdqa ("xmm1",&QWP(0x50,"ebx"));
+ &pmuludq("xmm0","xmm7"); # a[4]*b[7]
+ &paddq ("xmm3",&QWP(0x30,"esp"));
+ &movdqa (&QWP(0x10,"esp"),"xmm2");
+ &pand ("xmm5","xmm6"); # lower 32 bits of a[0]*b[i]
+
+ &movdqa ("xmm2",&QWP(0x60,"ebx"));
+ &pmuludq("xmm1","xmm7"); # a[5]*b[7]
+ &paddq ("xmm3","xmm5"); # reduction step
+ &paddq ("xmm0",&QWP(0x40,"esp"));
+ &movdqa (&QWP(0x20,"esp"),"xmm3");
+ &pshufd("xmm4","xmm5",0b10110001); # xmm4 = xmm5<<32, reduction step
+
+ &movdqa ("xmm3",&QWP(0x70,"ebx"));
+ &pmuludq("xmm2","xmm7"); # a[6]*b[7]
+ &paddq ("xmm1",&QWP(0x50,"esp"));
+ &psubq ("xmm4","xmm5"); # xmm4 = xmm5*0xffffffff, reduction step
+ &movdqa (&QWP(0x30,"esp"),"xmm0");
+
+ &pmuludq("xmm3","xmm7"); # a[7]*b[7]
+ &pcmpeqd("xmm7","xmm7");
+ &movdqa ("xmm0",&QWP(0x00,"esp"));
+ &pslldq ("xmm7",8);
+ &movdqa (&QWP(0x40,"esp"),"xmm1");
+ &paddq ("xmm2",&QWP(0x60,"esp"));
+
+ &paddq ("xmm2","xmm5"); # a[6]*b[7]+lw(a[0]*b[7]), reduction step
+ &paddq ("xmm3","xmm4"); # a[6]*b[7]+lw(a[0]*b[7])*0xffffffff, reduction step
+ &movdqa(&QWP(0x50,"esp"),"xmm2");
+ &movdqa(&QWP(0x60,"esp"),"xmm3");
+
+ &movdqa ("xmm1",&QWP(0x10,"esp"));
+ &movdqa ("xmm2",&QWP(0x20,"esp"));
+ &movdqa ("xmm3",&QWP(0x30,"esp"));
+
+ &movq ("xmm4","xmm0"); # "flatten"
+ &pand ("xmm0","xmm7");
+ &xor ("ebp","ebp");
+ &pslldq ("xmm4",6);
+ &movq ("xmm5","xmm1");
+ &paddq ("xmm0","xmm4");
+ &pand ("xmm1","xmm7");
+ &psrldq ("xmm0",6);
+ &movd ("eax","xmm0");
+ &psrldq ("xmm0",4);
+
+ &paddq ("xmm5","xmm0");
+ &movdqa ("xmm0",&QWP(0x40,"esp"));
+ &sub ("eax",-1); # start subtracting modulus,
+ # this is used to determine
+ # if result is larger/smaller
+ # than modulus (see below)
+ &pslldq ("xmm5",6);
+ &movq ("xmm4","xmm2");
+ &paddq ("xmm1","xmm5");
+ &pand ("xmm2","xmm7");
+ &psrldq ("xmm1",6);
+ &mov (&DWP(4*0,"edi"),"eax");
+ &movd ("eax","xmm1");
+ &psrldq ("xmm1",4);
+
+ &paddq ("xmm4","xmm1");
+ &movdqa ("xmm1",&QWP(0x50,"esp"));
+ &sbb ("eax",-1);
+ &pslldq ("xmm4",6);
+ &movq ("xmm5","xmm3");
+ &paddq ("xmm2","xmm4");
+ &pand ("xmm3","xmm7");
+ &psrldq ("xmm2",6);
+ &mov (&DWP(4*1,"edi"),"eax");
+ &movd ("eax","xmm2");
+ &psrldq ("xmm2",4);
+
+ &paddq ("xmm5","xmm2");
+ &movdqa ("xmm2",&QWP(0x60,"esp"));
+ &sbb ("eax",-1);
+ &pslldq ("xmm5",6);
+ &movq ("xmm4","xmm0");
+ &paddq ("xmm3","xmm5");
+ &pand ("xmm0","xmm7");
+ &psrldq ("xmm3",6);
+ &mov (&DWP(4*2,"edi"),"eax");
+ &movd ("eax","xmm3");
+ &psrldq ("xmm3",4);
+
+ &paddq ("xmm4","xmm3");
+ &sbb ("eax",0);
+ &pslldq ("xmm4",6);
+ &movq ("xmm5","xmm1");
+ &paddq ("xmm0","xmm4");
+ &pand ("xmm1","xmm7");
+ &psrldq ("xmm0",6);
+ &mov (&DWP(4*3,"edi"),"eax");
+ &movd ("eax","xmm0");
+ &psrldq ("xmm0",4);
+
+ &paddq ("xmm5","xmm0");
+ &sbb ("eax",0);
+ &pslldq ("xmm5",6);
+ &movq ("xmm4","xmm2");
+ &paddq ("xmm1","xmm5");
+ &pand ("xmm2","xmm7");
+ &psrldq ("xmm1",6);
+ &movd ("ebx","xmm1");
+ &psrldq ("xmm1",4);
+ &mov ("esp","edx");
+
+ &paddq ("xmm4","xmm1");
+ &pslldq ("xmm4",6);
+ &paddq ("xmm2","xmm4");
+ &psrldq ("xmm2",6);
+ &movd ("ecx","xmm2");
+ &psrldq ("xmm2",4);
+ &sbb ("ebx",0);
+ &movd ("edx","xmm2");
+ &pextrw ("esi","xmm2",2); # top-most overflow bit
+ &sbb ("ecx",1);
+ &sbb ("edx",-1);
+ &sbb ("esi",0); # borrow from subtraction
+
+ # Final step is "if result > mod, subtract mod", and at this point
+ # we have result - mod written to output buffer, as well as borrow
+ # bit from this subtraction, and if borrow bit is set, we add
+ # modulus back.
+ #
+ # Note that because mod has special form, i.e. consists of
+ # 0xffffffff, 1 and 0s, we can conditionally synthesize it by
+ # assigning borrow bit to one register, %ebp, and its negative
+ # to another, %esi. But we started by calculating %esi...
+
+ &sub ("ebp","esi");
+ &add (&DWP(4*0,"edi"),"esi"); # add modulus or zero
+ &adc (&DWP(4*1,"edi"),"esi");
+ &adc (&DWP(4*2,"edi"),"esi");
+ &adc (&DWP(4*3,"edi"),0);
+ &adc ("eax",0);
+ &adc ("ebx",0);
+ &mov (&DWP(4*4,"edi"),"eax");
+ &adc ("ecx","ebp");
+ &mov (&DWP(4*5,"edi"),"ebx");
+ &adc ("edx","esi");
+ &mov (&DWP(4*6,"edi"),"ecx");
+ &mov (&DWP(4*7,"edi"),"edx");
+
+ &ret ();
+
+&set_label("mul_mont_ialu",16); }
+
+ ########################################
+ # IALU code path suitable for all CPUs.
+ ########################################
+ # stack layout:
+ # +------------------------------------+< %esp
+ # | 8 32-bit temporary words, accessed |
+ # | as circular buffer |
+ # . .
+ # . .
+ # +------------------------------------+< +32
+ # | offloaded destination pointer |
+ # +------------------------------------+
+ # | unused |
+ # +------------------------------------+< +40
+ &sub ("esp",10*4);
+
+ &mov ("eax",&DWP(0*4,"esi")); # a[0]
+ &mov ("ebx",&DWP(0*4,"ebp")); # b[0]
+ &mov (&DWP(8*4,"esp"),"edi"); # off-load dst ptr
+
+ &mul ("ebx"); # a[0]*b[0]
+ &mov (&DWP(0*4,"esp"),"eax"); # t[0]
+ &mov ("eax",&DWP(1*4,"esi"));
+ &mov ("ecx","edx")
+
+ &mul ("ebx"); # a[1]*b[0]
+ &add ("ecx","eax");
+ &mov ("eax",&DWP(2*4,"esi"));
+ &adc ("edx",0);
+ &mov (&DWP(1*4,"esp"),"ecx"); # t[1]
+ &mov ("ecx","edx");
+
+ &mul ("ebx"); # a[2]*b[0]
+ &add ("ecx","eax");
+ &mov ("eax",&DWP(3*4,"esi"));
+ &adc ("edx",0);
+ &mov (&DWP(2*4,"esp"),"ecx"); # t[2]
+ &mov ("ecx","edx");
+
+ &mul ("ebx"); # a[3]*b[0]
+ &add ("ecx","eax");
+ &mov ("eax",&DWP(4*4,"esi"));
+ &adc ("edx",0);
+ &mov (&DWP(3*4,"esp"),"ecx"); # t[3]
+ &mov ("ecx","edx");
+
+ &mul ("ebx"); # a[4]*b[0]
+ &add ("ecx","eax");
+ &mov ("eax",&DWP(5*4,"esi"));
+ &adc ("edx",0);
+ &mov (&DWP(4*4,"esp"),"ecx"); # t[4]
+ &mov ("ecx","edx");
+
+ &mul ("ebx"); # a[5]*b[0]
+ &add ("ecx","eax");
+ &mov ("eax",&DWP(6*4,"esi"));
+ &adc ("edx",0);
+ &mov (&DWP(5*4,"esp"),"ecx"); # t[5]
+ &mov ("ecx","edx");
+
+ &mul ("ebx"); # a[6]*b[0]
+ &add ("ecx","eax");
+ &mov ("eax",&DWP(7*4,"esi"));
+ &adc ("edx",0);
+ &mov (&DWP(6*4,"esp"),"ecx"); # t[6]
+ &mov ("ecx","edx");
+
+ &xor ("edi","edi"); # initial top-most carry
+ &mul ("ebx"); # a[7]*b[0]
+ &add ("ecx","eax"); # t[7]
+ &mov ("eax",&DWP(0*4,"esp")); # t[0]
+ &adc ("edx",0); # t[8]
+
+for ($i=0;$i<7;$i++) {
+ my $j=$i+1;
+
+ # Reduction iteration is normally performed by accumulating
+ # result of multiplication of modulus by "magic" digit [and
+ # omitting least significant word, which is guaranteed to
+ # be 0], but thanks to special form of modulus and "magic"
+ # digit being equal to least significant word, it can be
+ # performed with additions and subtractions alone. Indeed:
+ #
+ # ffff.0001.0000.0000.0000.ffff.ffff.ffff
+ # * abcd
+ # + xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.abcd
+ #
+ # Now observing that ff..ff*x = (2^n-1)*x = 2^n*x-x, we
+ # rewrite above as:
+ #
+ # xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.abcd
+ # + abcd.0000.abcd.0000.0000.abcd.0000.0000.0000
+ # - abcd.0000.0000.0000.0000.0000.0000.abcd
+ #
+ # or marking redundant operations:
+ #
+ # xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.----
+ # + abcd.0000.abcd.0000.0000.abcd.----.----.----
+ # - abcd.----.----.----.----.----.----.----
+
+ &add (&DWP((($i+3)%8)*4,"esp"),"eax"); # t[3]+=t[0]
+ &adc (&DWP((($i+4)%8)*4,"esp"),0); # t[4]+=0
+ &adc (&DWP((($i+5)%8)*4,"esp"),0); # t[5]+=0
+ &adc (&DWP((($i+6)%8)*4,"esp"),"eax"); # t[6]+=t[0]
+ &adc ("ecx",0); # t[7]+=0
+ &adc ("edx","eax"); # t[8]+=t[0]
+ &adc ("edi",0); # top-most carry
+ &mov ("ebx",&DWP($j*4,"ebp")); # b[i]
+ &sub ("ecx","eax"); # t[7]-=t[0]
+ &mov ("eax",&DWP(0*4,"esi")); # a[0]
+ &sbb ("edx",0); # t[8]-=0
+ &mov (&DWP((($i+7)%8)*4,"esp"),"ecx");
+ &sbb ("edi",0); # top-most carry,
+ # keep in mind that
+ # netto result is
+ # *addition* of value
+ # with (abcd<<32)-abcd
+ # on top, so that
+ # underflow is
+ # impossible, because
+ # (abcd<<32)-abcd
+ # doesn't underflow
+ &mov (&DWP((($i+8)%8)*4,"esp"),"edx");
+
+ &mul ("ebx"); # a[0]*b[i]
+ &add ("eax",&DWP((($j+0)%8)*4,"esp"));
+ &adc ("edx",0);
+ &mov (&DWP((($j+0)%8)*4,"esp"),"eax");
+ &mov ("eax",&DWP(1*4,"esi"));
+ &mov ("ecx","edx")
+
+ &mul ("ebx"); # a[1]*b[i]
+ &add ("ecx",&DWP((($j+1)%8)*4,"esp"));
+ &adc ("edx",0);
+ &add ("ecx","eax");
+ &adc ("edx",0);
+ &mov ("eax",&DWP(2*4,"esi"));
+ &mov (&DWP((($j+1)%8)*4,"esp"),"ecx");
+ &mov ("ecx","edx");
+
+ &mul ("ebx"); # a[2]*b[i]
+ &add ("ecx",&DWP((($j+2)%8)*4,"esp"));
+ &adc ("edx",0);
+ &add ("ecx","eax");
+ &adc ("edx",0);
+ &mov ("eax",&DWP(3*4,"esi"));
+ &mov (&DWP((($j+2)%8)*4,"esp"),"ecx");
+ &mov ("ecx","edx");
+
+ &mul ("ebx"); # a[3]*b[i]
+ &add ("ecx",&DWP((($j+3)%8)*4,"esp"));
+ &adc ("edx",0);
+ &add ("ecx","eax");
+ &adc ("edx",0);
+ &mov ("eax",&DWP(4*4,"esi"));
+ &mov (&DWP((($j+3)%8)*4,"esp"),"ecx");
+ &mov ("ecx","edx");
+
+ &mul ("ebx"); # a[4]*b[i]
+ &add ("ecx",&DWP((($j+4)%8)*4,"esp"));
+ &adc ("edx",0);
+ &add ("ecx","eax");
+ &adc ("edx",0);
+ &mov ("eax",&DWP(5*4,"esi"));
+ &mov (&DWP((($j+4)%8)*4,"esp"),"ecx");
+ &mov ("ecx","edx");
+
+ &mul ("ebx"); # a[5]*b[i]
+ &add ("ecx",&DWP((($j+5)%8)*4,"esp"));
+ &adc ("edx",0);
+ &add ("ecx","eax");
+ &adc ("edx",0);
+ &mov ("eax",&DWP(6*4,"esi"));
+ &mov (&DWP((($j+5)%8)*4,"esp"),"ecx");
+ &mov ("ecx","edx");
+
+ &mul ("ebx"); # a[6]*b[i]
+ &add ("ecx",&DWP((($j+6)%8)*4,"esp"));
+ &adc ("edx",0);
+ &add ("ecx","eax");
+ &adc ("edx",0);
+ &mov ("eax",&DWP(7*4,"esi"));
+ &mov (&DWP((($j+6)%8)*4,"esp"),"ecx");
+ &mov ("ecx","edx");
+
+ &mul ("ebx"); # a[7]*b[i]
+ &add ("ecx",&DWP((($j+7)%8)*4,"esp"));
+ &adc ("edx",0);
+ &add ("ecx","eax"); # t[7]
+ &mov ("eax",&DWP((($j+0)%8)*4,"esp")); # t[0]
+ &adc ("edx","edi"); # t[8]
+ &mov ("edi",0);
+ &adc ("edi",0); # top-most carry
+}
+ &mov ("ebp",&DWP(8*4,"esp")); # restore dst ptr
+ &xor ("esi","esi");
+ my $j=$i+1;
+
+ # last multiplication-less reduction
+ &add (&DWP((($i+3)%8)*4,"esp"),"eax"); # t[3]+=t[0]
+ &adc (&DWP((($i+4)%8)*4,"esp"),0); # t[4]+=0
+ &adc (&DWP((($i+5)%8)*4,"esp"),0); # t[5]+=0
+ &adc (&DWP((($i+6)%8)*4,"esp"),"eax"); # t[6]+=t[0]
+ &adc ("ecx",0); # t[7]+=0
+ &adc ("edx","eax"); # t[8]+=t[0]
+ &adc ("edi",0); # top-most carry
+ &mov ("ebx",&DWP((($j+1)%8)*4,"esp"));
+ &sub ("ecx","eax"); # t[7]-=t[0]
+ &mov ("eax",&DWP((($j+0)%8)*4,"esp"));
+ &sbb ("edx",0); # t[8]-=0
+ &mov (&DWP((($i+7)%8)*4,"esp"),"ecx");
+ &sbb ("edi",0); # top-most carry
+ &mov (&DWP((($i+8)%8)*4,"esp"),"edx");
+
+ # Final step is "if result > mod, subtract mod", but we do it
+ # "other way around", namely write result - mod to output buffer
+ # and if subtraction borrowed, add modulus back.
+
+ &mov ("ecx",&DWP((($j+2)%8)*4,"esp"));
+ &sub ("eax",-1);
+ &mov ("edx",&DWP((($j+3)%8)*4,"esp"));
+ &sbb ("ebx",-1);
+ &mov (&DWP(0*4,"ebp"),"eax");
+ &sbb ("ecx",-1);
+ &mov (&DWP(1*4,"ebp"),"ebx");
+ &sbb ("edx",0);
+ &mov (&DWP(2*4,"ebp"),"ecx");
+ &mov (&DWP(3*4,"ebp"),"edx");
+
+ &mov ("eax",&DWP((($j+4)%8)*4,"esp"));
+ &mov ("ebx",&DWP((($j+5)%8)*4,"esp"));
+ &mov ("ecx",&DWP((($j+6)%8)*4,"esp"));
+ &sbb ("eax",0);
+ &mov ("edx",&DWP((($j+7)%8)*4,"esp"));
+ &sbb ("ebx",0);
+ &sbb ("ecx",1);
+ &sbb ("edx",-1);
+ &sbb ("edi",0);
+
+ # Note that because mod has special form, i.e. consists of
+ # 0xffffffff, 1 and 0s, we can conditionally synthesize it by
+ # assigning borrow bit to one register, %ebp, and its negative
+ # to another, %esi. But we started by calculating %esi...
+
+ &sub ("esi","edi");
+ &add (&DWP(0*4,"ebp"),"edi"); # add modulus or zero
+ &adc (&DWP(1*4,"ebp"),"edi");
+ &adc (&DWP(2*4,"ebp"),"edi");
+ &adc (&DWP(3*4,"ebp"),0);
+ &adc ("eax",0);
+ &adc ("ebx",0);
+ &mov (&DWP(4*4,"ebp"),"eax");
+ &adc ("ecx","esi");
+ &mov (&DWP(5*4,"ebp"),"ebx");
+ &adc ("edx","edi");
+ &mov (&DWP(6*4,"ebp"),"ecx");
+ &mov ("edi","ebp"); # fulfill contract
+ &mov (&DWP(7*4,"ebp"),"edx");
+
+ &add ("esp",10*4);
+ &ret ();
+&function_end_B("_ecp_nistz256_mul_mont");
+
+########################################################################
+# void ecp_nistz256_scatter_w5(void *edi,const P256_POINT *esi,
+# int ebp);
+&function_begin("ecp_nistz256_scatter_w5");
+ &mov ("edi",&wparam(0));
+ &mov ("esi",&wparam(1));
+ &mov ("ebp",&wparam(2));
+
+ &lea ("edi",&DWP(128-4,"edi","ebp",4));
+ &mov ("ebp",96/16);
+&set_label("scatter_w5_loop");
+ &mov ("eax",&DWP(0,"esi"));
+ &mov ("ebx",&DWP(4,"esi"));
+ &mov ("ecx",&DWP(8,"esi"));
+ &mov ("edx",&DWP(12,"esi"));
+ &lea ("esi",&DWP(16,"esi"));
+ &mov (&DWP(64*0-128,"edi"),"eax");
+ &mov (&DWP(64*1-128,"edi"),"ebx");
+ &mov (&DWP(64*2-128,"edi"),"ecx");
+ &mov (&DWP(64*3-128,"edi"),"edx");
+ &lea ("edi",&DWP(64*4,"edi"));
+ &dec ("ebp");
+ &jnz (&label("scatter_w5_loop"));
+&function_end("ecp_nistz256_scatter_w5");
+
+########################################################################
+# void ecp_nistz256_gather_w5(P256_POINT *edi,const void *esi,
+# int ebp);
+&function_begin("ecp_nistz256_gather_w5");
+ &mov ("esi",&wparam(1));
+ &mov ("ebp",&wparam(2));
+
+ &lea ("esi",&DWP(0,"esi","ebp",4));
+ &neg ("ebp");
+ &sar ("ebp",31);
+ &mov ("edi",&wparam(0));
+ &lea ("esi",&DWP(0,"esi","ebp",4));
+
+ for($i=0;$i<24;$i+=4) {
+ &mov ("eax",&DWP(64*($i+0),"esi"));
+ &mov ("ebx",&DWP(64*($i+1),"esi"));
+ &mov ("ecx",&DWP(64*($i+2),"esi"));
+ &mov ("edx",&DWP(64*($i+3),"esi"));
+ &and ("eax","ebp");
+ &and ("ebx","ebp");
+ &and ("ecx","ebp");
+ &and ("edx","ebp");
+ &mov (&DWP(4*($i+0),"edi"),"eax");
+ &mov (&DWP(4*($i+1),"edi"),"ebx");
+ &mov (&DWP(4*($i+2),"edi"),"ecx");
+ &mov (&DWP(4*($i+3),"edi"),"edx");
+ }
+&function_end("ecp_nistz256_gather_w5");
+
+########################################################################
+# void ecp_nistz256_scatter_w7(void *edi,const P256_POINT_AFFINE *esi,
+# int ebp);
+&function_begin("ecp_nistz256_scatter_w7");
+ &mov ("edi",&wparam(0));
+ &mov ("esi",&wparam(1));
+ &mov ("ebp",&wparam(2));
+
+ &lea ("edi",&DWP(-1,"edi","ebp"));
+ &mov ("ebp",64/4);
+&set_label("scatter_w7_loop");
+ &mov ("eax",&DWP(0,"esi"));
+ &lea ("esi",&DWP(4,"esi"));
+ &mov (&BP(64*0,"edi"),"al");
+ &mov (&BP(64*1,"edi"),"ah");
+ &shr ("eax",16);
+ &mov (&BP(64*2,"edi"),"al");
+ &mov (&BP(64*3,"edi"),"ah");
+ &lea ("edi",&DWP(64*4,"edi"));
+ &dec ("ebp");
+ &jnz (&label("scatter_w7_loop"));
+&function_end("ecp_nistz256_scatter_w7");
+
+########################################################################
+# void ecp_nistz256_gather_w7(P256_POINT_AFFINE *edi,const void *esi,
+# int ebp);
+&function_begin("ecp_nistz256_gather_w7");
+ &mov ("esi",&wparam(1));
+ &mov ("ebp",&wparam(2));
+
+ &add ("esi","ebp");
+ &neg ("ebp"),
+ &sar ("ebp",31);
+ &mov ("edi",&wparam(0));
+ &lea ("esi",&DWP(0,"esi","ebp"));
+
+ for($i=0;$i<64;$i+=4) {
+ &movz ("eax",&BP(64*($i+0),"esi"));
+ &movz ("ebx",&BP(64*($i+1),"esi"));
+ &movz ("ecx",&BP(64*($i+2),"esi"));
+ &and ("eax","ebp");
+ &movz ("edx",&BP(64*($i+3),"esi"));
+ &and ("ebx","ebp");
+ &mov (&BP($i+0,"edi"),"al");
+ &and ("ecx","ebp");
+ &mov (&BP($i+1,"edi"),"bl");
+ &and ("edx","ebp");
+ &mov (&BP($i+2,"edi"),"cl");
+ &mov (&BP($i+3,"edi"),"dl");
+ }
+&function_end("ecp_nistz256_gather_w7");
+
+########################################################################
+# following subroutines are "literal" implementation of those found in
+# ecp_nistz256.c
+#
+########################################################################
+# void ecp_nistz256_point_double(P256_POINT *out,const P256_POINT *inp);
+#
+&static_label("point_double_shortcut");
+&function_begin("ecp_nistz256_point_double");
+{ my ($S,$M,$Zsqr,$in_x,$tmp0)=map(32*$_,(0..4));
+
+ &mov ("esi",&wparam(1));
+
+ # above map() describes stack layout with 5 temporary
+ # 256-bit vectors on top, then we take extra word for
+ # OPENSSL_ia32cap_P copy.
+ &stack_push(8*5+1);
+ if ($sse2) {
+ &call ("_picup_eax");
+ &set_label("pic");
+ &picmeup("edx","OPENSSL_ia32cap_P","eax",&label("pic"));
+ &mov ("ebp",&DWP(0,"edx")); }
+
+&set_label("point_double_shortcut");
+ &mov ("eax",&DWP(0,"esi")); # copy in_x
+ &mov ("ebx",&DWP(4,"esi"));
+ &mov ("ecx",&DWP(8,"esi"));
+ &mov ("edx",&DWP(12,"esi"));
+ &mov (&DWP($in_x+0,"esp"),"eax");
+ &mov (&DWP($in_x+4,"esp"),"ebx");
+ &mov (&DWP($in_x+8,"esp"),"ecx");
+ &mov (&DWP($in_x+12,"esp"),"edx");
+ &mov ("eax",&DWP(16,"esi"));
+ &mov ("ebx",&DWP(20,"esi"));
+ &mov ("ecx",&DWP(24,"esi"));
+ &mov ("edx",&DWP(28,"esi"));
+ &mov (&DWP($in_x+16,"esp"),"eax");
+ &mov (&DWP($in_x+20,"esp"),"ebx");
+ &mov (&DWP($in_x+24,"esp"),"ecx");
+ &mov (&DWP($in_x+28,"esp"),"edx");
+ &mov (&DWP(32*5,"esp"),"ebp"); # OPENSSL_ia32cap_P copy
+
+ &lea ("ebp",&DWP(32,"esi"));
+ &lea ("esi",&DWP(32,"esi"));
+ &lea ("edi",&DWP($S,"esp"));
+ &call ("_ecp_nistz256_add"); # p256_mul_by_2(S, in_y);
+
+ &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy
+ &mov ("esi",64);
+ &add ("esi",&wparam(1));
+ &lea ("edi",&DWP($Zsqr,"esp"));
+ &mov ("ebp","esi");
+ &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Zsqr, in_z);
+
+ &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy
+ &lea ("esi",&DWP($S,"esp"));
+ &lea ("ebp",&DWP($S,"esp"));
+ &lea ("edi",&DWP($S,"esp"));
+ &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(S, S);
+
+ &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy
+ &mov ("ebp",&wparam(1));
+ &lea ("esi",&DWP(32,"ebp"));
+ &lea ("ebp",&DWP(64,"ebp"));
+ &lea ("edi",&DWP($tmp0,"esp"));
+ &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(tmp0, in_z, in_y);
+
+ &lea ("esi",&DWP($in_x,"esp"));
+ &lea ("ebp",&DWP($Zsqr,"esp"));
+ &lea ("edi",&DWP($M,"esp"));
+ &call ("_ecp_nistz256_add"); # p256_add(M, in_x, Zsqr);
+
+ &mov ("edi",64);
+ &lea ("esi",&DWP($tmp0,"esp"));
+ &lea ("ebp",&DWP($tmp0,"esp"));
+ &add ("edi",&wparam(0));
+ &call ("_ecp_nistz256_add"); # p256_mul_by_2(res_z, tmp0);
+
+ &lea ("esi",&DWP($in_x,"esp"));
+ &lea ("ebp",&DWP($Zsqr,"esp"));
+ &lea ("edi",&DWP($Zsqr,"esp"));
+ &call ("_ecp_nistz256_sub"); # p256_sub(Zsqr, in_x, Zsqr);
+
+ &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy
+ &lea ("esi",&DWP($S,"esp"));
+ &lea ("ebp",&DWP($S,"esp"));
+ &lea ("edi",&DWP($tmp0,"esp"));
+ &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(tmp0, S);
+
+ &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy
+ &lea ("esi",&DWP($M,"esp"));
+ &lea ("ebp",&DWP($Zsqr,"esp"));
+ &lea ("edi",&DWP($M,"esp"));
+ &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(M, M, Zsqr);
+
+ &mov ("edi",32);
+ &lea ("esi",&DWP($tmp0,"esp"));
+ &add ("edi",&wparam(0));
+ &call ("_ecp_nistz256_div_by_2"); # p256_div_by_2(res_y, tmp0);
+
+ &lea ("esi",&DWP($M,"esp"));
+ &lea ("ebp",&DWP($M,"esp"));
+ &lea ("edi",&DWP($tmp0,"esp"));
+ &call ("_ecp_nistz256_add"); # 1/2 p256_mul_by_3(M, M);
+
+ &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy
+ &lea ("esi",&DWP($in_x,"esp"));
+ &lea ("ebp",&DWP($S,"esp"));
+ &lea ("edi",&DWP($S,"esp"));
+ &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S, S, in_x);
+
+ &lea ("esi",&DWP($tmp0,"esp"));
+ &lea ("ebp",&DWP($M,"esp"));
+ &lea ("edi",&DWP($M,"esp"));
+ &call ("_ecp_nistz256_add"); # 2/2 p256_mul_by_3(M, M);
+
+ &lea ("esi",&DWP($S,"esp"));
+ &lea ("ebp",&DWP($S,"esp"));
+ &lea ("edi",&DWP($tmp0,"esp"));
+ &call ("_ecp_nistz256_add"); # p256_mul_by_2(tmp0, S);
+
+ &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy
+ &lea ("esi",&DWP($M,"esp"));
+ &lea ("ebp",&DWP($M,"esp"));
+ &mov ("edi",&wparam(0));
+ &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(res_x, M);
+
+ &mov ("esi","edi"); # %edi is still res_x here
+ &lea ("ebp",&DWP($tmp0,"esp"));
+ &call ("_ecp_nistz256_sub"); # p256_sub(res_x, res_x, tmp0);
+
+ &lea ("esi",&DWP($S,"esp"));
+ &mov ("ebp","edi"); # %edi is still res_x
+ &lea ("edi",&DWP($S,"esp"));
+ &call ("_ecp_nistz256_sub"); # p256_sub(S, S, res_x);
+
+ &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy
+ &mov ("esi","edi"); # %edi is still &S
+ &lea ("ebp",&DWP($M,"esp"));
+ &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S, S, M);
+
+ &mov ("ebp",32);
+ &lea ("esi",&DWP($S,"esp"));
+ &add ("ebp",&wparam(0));
+ &mov ("edi","ebp");
+ &call ("_ecp_nistz256_sub"); # p256_sub(res_y, S, res_y);
+
+ &stack_pop(8*5+1);
+} &function_end("ecp_nistz256_point_double");
+
+########################################################################
+# void ecp_nistz256_point_add(P256_POINT *out,const P256_POINT *in1,
+# const P256_POINT *in2);
+&function_begin("ecp_nistz256_point_add");
+{ my ($res_x,$res_y,$res_z,
+ $in1_x,$in1_y,$in1_z,
+ $in2_x,$in2_y,$in2_z,
+ $H,$Hsqr,$R,$Rsqr,$Hcub,
+ $U1,$U2,$S1,$S2)=map(32*$_,(0..17));
+ my ($Z1sqr, $Z2sqr) = ($Hsqr, $Rsqr);
+
+ &mov ("esi",&wparam(2));
+
+ # above map() describes stack layout with 18 temporary
+ # 256-bit vectors on top, then we take extra words for
+ # !in1infty, !in2infty, result of check for zero and
+ # OPENSSL_ia32cap_P copy. [one unused word for padding]
+ &stack_push(8*18+5);
+ if ($sse2) {
+ &call ("_picup_eax");
+ &set_label("pic");
+ &picmeup("edx","OPENSSL_ia32cap_P","eax",&label("pic"));
+ &mov ("ebp",&DWP(0,"edx")); }
+
+ &lea ("edi",&DWP($in2_x,"esp"));
+ for($i=0;$i<96;$i+=16) {
+ &mov ("eax",&DWP($i+0,"esi")); # copy in2
+ &mov ("ebx",&DWP($i+4,"esi"));
+ &mov ("ecx",&DWP($i+8,"esi"));
+ &mov ("edx",&DWP($i+12,"esi"));
+ &mov (&DWP($i+0,"edi"),"eax");
+ &mov (&DWP(32*18+12,"esp"),"ebp") if ($i==0);
+ &mov ("ebp","eax") if ($i==64);
+ &or ("ebp","eax") if ($i>64);
+ &mov (&DWP($i+4,"edi"),"ebx");
+ &or ("ebp","ebx") if ($i>=64);
+ &mov (&DWP($i+8,"edi"),"ecx");
+ &or ("ebp","ecx") if ($i>=64);
+ &mov (&DWP($i+12,"edi"),"edx");
+ &or ("ebp","edx") if ($i>=64);
+ }
+ &xor ("eax","eax");
+ &mov ("esi",&wparam(1));
+ &sub ("eax","ebp");
+ &or ("ebp","eax");
+ &sar ("ebp",31);
+ &mov (&DWP(32*18+4,"esp"),"ebp"); # !in2infty
+
+ &lea ("edi",&DWP($in1_x,"esp"));
+ for($i=0;$i<96;$i+=16) {
+ &mov ("eax",&DWP($i+0,"esi")); # copy in1
+ &mov ("ebx",&DWP($i+4,"esi"));
+ &mov ("ecx",&DWP($i+8,"esi"));
+ &mov ("edx",&DWP($i+12,"esi"));
+ &mov (&DWP($i+0,"edi"),"eax");
+ &mov ("ebp","eax") if ($i==64);
+ &or ("ebp","eax") if ($i>64);
+ &mov (&DWP($i+4,"edi"),"ebx");
+ &or ("ebp","ebx") if ($i>=64);
+ &mov (&DWP($i+8,"edi"),"ecx");
+ &or ("ebp","ecx") if ($i>=64);
+ &mov (&DWP($i+12,"edi"),"edx");
+ &or ("ebp","edx") if ($i>=64);
+ }
+ &xor ("eax","eax");
+ &sub ("eax","ebp");
+ &or ("ebp","eax");
+ &sar ("ebp",31);
+ &mov (&DWP(32*18+0,"esp"),"ebp"); # !in1infty
+
+ &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
+ &lea ("esi",&DWP($in2_z,"esp"));
+ &lea ("ebp",&DWP($in2_z,"esp"));
+ &lea ("edi",&DWP($Z2sqr,"esp"));
+ &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Z2sqr, in2_z);
+
+ &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
+ &lea ("esi",&DWP($in1_z,"esp"));
+ &lea ("ebp",&DWP($in1_z,"esp"));
+ &lea ("edi",&DWP($Z1sqr,"esp"));
+ &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Z1sqr, in1_z);
+
+ &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
+ &lea ("esi",&DWP($Z2sqr,"esp"));
+ &lea ("ebp",&DWP($in2_z,"esp"));
+ &lea ("edi",&DWP($S1,"esp"));
+ &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S1, Z2sqr, in2_z);
+
+ &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
+ &lea ("esi",&DWP($Z1sqr,"esp"));
+ &lea ("ebp",&DWP($in1_z,"esp"));
+ &lea ("edi",&DWP($S2,"esp"));
+ &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S2, Z1sqr, in1_z);
+
+ &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
+ &lea ("esi",&DWP($in1_y,"esp"));
+ &lea ("ebp",&DWP($S1,"esp"));
+ &lea ("edi",&DWP($S1,"esp"));
+ &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S1, S1, in1_y);
+
+ &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
+ &lea ("esi",&DWP($in2_y,"esp"));
+ &lea ("ebp",&DWP($S2,"esp"));
+ &lea ("edi",&DWP($S2,"esp"));
+ &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S2, S2, in2_y);
+
+ &lea ("esi",&DWP($S2,"esp"));
+ &lea ("ebp",&DWP($S1,"esp"));
+ &lea ("edi",&DWP($R,"esp"));
+ &call ("_ecp_nistz256_sub"); # p256_sub(R, S2, S1);
+
+ &or ("ebx","eax"); # see if result is zero
+ &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
+ &or ("ebx","ecx");
+ &or ("ebx","edx");
+ &or ("ebx",&DWP(0,"edi"));
+ &or ("ebx",&DWP(4,"edi"));
+ &lea ("esi",&DWP($in1_x,"esp"));
+ &or ("ebx",&DWP(8,"edi"));
+ &lea ("ebp",&DWP($Z2sqr,"esp"));
+ &or ("ebx",&DWP(12,"edi"));
+ &lea ("edi",&DWP($U1,"esp"));
+ &mov (&DWP(32*18+8,"esp"),"ebx");
+
+ &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(U1, in1_x, Z2sqr);
+
+ &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
+ &lea ("esi",&DWP($in2_x,"esp"));
+ &lea ("ebp",&DWP($Z1sqr,"esp"));
+ &lea ("edi",&DWP($U2,"esp"));
+ &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(U2, in2_x, Z1sqr);
+
+ &lea ("esi",&DWP($U2,"esp"));
+ &lea ("ebp",&DWP($U1,"esp"));
+ &lea ("edi",&DWP($H,"esp"));
+ &call ("_ecp_nistz256_sub"); # p256_sub(H, U2, U1);
+
+ &or ("eax","ebx"); # see if result is zero
+ &or ("eax","ecx");
+ &or ("eax","edx");
+ &or ("eax",&DWP(0,"edi"));
+ &or ("eax",&DWP(4,"edi"));
+ &or ("eax",&DWP(8,"edi"));
+ &or ("eax",&DWP(12,"edi"));
+
+ &data_byte(0x3e); # predict taken
+ &jnz (&label("add_proceed")); # is_equal(U1,U2)?
+
+ &mov ("eax",&DWP(32*18+0,"esp"));
+ &and ("eax",&DWP(32*18+4,"esp"));
+ &mov ("ebx",&DWP(32*18+8,"esp"));
+ &jz (&label("add_proceed")); # (in1infty || in2infty)?
+ &test ("ebx","ebx");
+ &jz (&label("add_double")); # is_equal(S1,S2)?
+
+ &mov ("edi",&wparam(0));
+ &xor ("eax","eax");
+ &mov ("ecx",96/4);
+ &data_byte(0xfc,0xf3,0xab); # cld; stosd
+ &jmp (&label("add_done"));
+
+&set_label("add_double",16);
+ &mov ("esi",&wparam(1));
+ &mov ("ebp",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
+ &add ("esp",4*((8*18+5)-(8*5+1))); # difference in frame sizes
+ &jmp (&label("point_double_shortcut"));
+
+&set_label("add_proceed",16);
+ &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
+ &lea ("esi",&DWP($R,"esp"));
+ &lea ("ebp",&DWP($R,"esp"));
+ &lea ("edi",&DWP($Rsqr,"esp"));
+ &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Rsqr, R);
+
+ &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
+ &lea ("esi",&DWP($H,"esp"));
+ &lea ("ebp",&DWP($in1_z,"esp"));
+ &lea ("edi",&DWP($res_z,"esp"));
+ &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(res_z, H, in1_z);
+
+ &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
+ &lea ("esi",&DWP($H,"esp"));
+ &lea ("ebp",&DWP($H,"esp"));
+ &lea ("edi",&DWP($Hsqr,"esp"));
+ &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Hsqr, H);
+
+ &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
+ &lea ("esi",&DWP($in2_z,"esp"));
+ &lea ("ebp",&DWP($res_z,"esp"));
+ &lea ("edi",&DWP($res_z,"esp"));
+ &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(res_z, res_z, in2_z);
+
+ &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
+ &lea ("esi",&DWP($Hsqr,"esp"));
+ &lea ("ebp",&DWP($U1,"esp"));
+ &lea ("edi",&DWP($U2,"esp"));
+ &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(U2, U1, Hsqr);
+
+ &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
+ &lea ("esi",&DWP($H,"esp"));
+ &lea ("ebp",&DWP($Hsqr,"esp"));
+ &lea ("edi",&DWP($Hcub,"esp"));
+ &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(Hcub, Hsqr, H);
+
+ &lea ("esi",&DWP($U2,"esp"));
+ &lea ("ebp",&DWP($U2,"esp"));
+ &lea ("edi",&DWP($Hsqr,"esp"));
+ &call ("_ecp_nistz256_add"); # p256_mul_by_2(Hsqr, U2);
+
+ &lea ("esi",&DWP($Rsqr,"esp"));
+ &lea ("ebp",&DWP($Hsqr,"esp"));
+ &lea ("edi",&DWP($res_x,"esp"));
+ &call ("_ecp_nistz256_sub"); # p256_sub(res_x, Rsqr, Hsqr);
+
+ &lea ("esi",&DWP($res_x,"esp"));
+ &lea ("ebp",&DWP($Hcub,"esp"));
+ &lea ("edi",&DWP($res_x,"esp"));
+ &call ("_ecp_nistz256_sub"); # p256_sub(res_x, res_x, Hcub);
+
+ &lea ("esi",&DWP($U2,"esp"));
+ &lea ("ebp",&DWP($res_x,"esp"));
+ &lea ("edi",&DWP($res_y,"esp"));
+ &call ("_ecp_nistz256_sub"); # p256_sub(res_y, U2, res_x);
+
+ &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
+ &lea ("esi",&DWP($Hcub,"esp"));
+ &lea ("ebp",&DWP($S1,"esp"));
+ &lea ("edi",&DWP($S2,"esp"));
+ &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S2, S1, Hcub);
+
+ &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy
+ &lea ("esi",&DWP($R,"esp"));
+ &lea ("ebp",&DWP($res_y,"esp"));
+ &lea ("edi",&DWP($res_y,"esp"));
+ &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(res_y, R, res_y);
+
+ &lea ("esi",&DWP($res_y,"esp"));
+ &lea ("ebp",&DWP($S2,"esp"));
+ &lea ("edi",&DWP($res_y,"esp"));
+ &call ("_ecp_nistz256_sub"); # p256_sub(res_y, res_y, S2);
+
+ &mov ("ebp",&DWP(32*18+0,"esp")); # !in1infty
+ &mov ("esi",&DWP(32*18+4,"esp")); # !in2infty
+ &mov ("edi",&wparam(0));
+ &mov ("edx","ebp");
+ &not ("ebp");
+ &and ("edx","esi");
+ &and ("ebp","esi");
+ &not ("esi");
+
+ ########################################
+ # conditional moves
+ for($i=64;$i<96;$i+=4) {
+ &mov ("eax","edx");
+ &and ("eax",&DWP($res_x+$i,"esp"));
+ &mov ("ebx","ebp");
+ &and ("ebx",&DWP($in2_x+$i,"esp"));
+ &mov ("ecx","esi");
+ &and ("ecx",&DWP($in1_x+$i,"esp"));
+ &or ("eax","ebx");
+ &or ("eax","ecx");
+ &mov (&DWP($i,"edi"),"eax");
+ }
+ for($i=0;$i<64;$i+=4) {
+ &mov ("eax","edx");
+ &and ("eax",&DWP($res_x+$i,"esp"));
+ &mov ("ebx","ebp");
+ &and ("ebx",&DWP($in2_x+$i,"esp"));
+ &mov ("ecx","esi");
+ &and ("ecx",&DWP($in1_x+$i,"esp"));
+ &or ("eax","ebx");
+ &or ("eax","ecx");
+ &mov (&DWP($i,"edi"),"eax");
+ }
+ &set_label("add_done");
+ &stack_pop(8*18+5);
+} &function_end("ecp_nistz256_point_add");
+
+########################################################################
+# void ecp_nistz256_point_add_affine(P256_POINT *out,
+# const P256_POINT *in1,
+# const P256_POINT_AFFINE *in2);
+&function_begin("ecp_nistz256_point_add_affine");
+{
+ my ($res_x,$res_y,$res_z,
+ $in1_x,$in1_y,$in1_z,
+ $in2_x,$in2_y,
+ $U2,$S2,$H,$R,$Hsqr,$Hcub,$Rsqr)=map(32*$_,(0..14));
+ my $Z1sqr = $S2;
+ my @ONE_mont=(1,0,0,-1,-1,-1,-2,0);
+
+ &mov ("esi",&wparam(1));
+
+ # above map() describes stack layout with 15 temporary
+ # 256-bit vectors on top, then we take extra words for
+ # !in1infty, !in2infty, and OPENSSL_ia32cap_P copy.
+ &stack_push(8*15+3);
+ if ($sse2) {
+ &call ("_picup_eax");
+ &set_label("pic");
+ &picmeup("edx","OPENSSL_ia32cap_P","eax",&label("pic"));
+ &mov ("ebp",&DWP(0,"edx")); }
+
+ &lea ("edi",&DWP($in1_x,"esp"));
+ for($i=0;$i<96;$i+=16) {
+ &mov ("eax",&DWP($i+0,"esi")); # copy in1
+ &mov ("ebx",&DWP($i+4,"esi"));
+ &mov ("ecx",&DWP($i+8,"esi"));
+ &mov ("edx",&DWP($i+12,"esi"));
+ &mov (&DWP($i+0,"edi"),"eax");
+ &mov (&DWP(32*15+8,"esp"),"ebp") if ($i==0);
+ &mov ("ebp","eax") if ($i==64);
+ &or ("ebp","eax") if ($i>64);
+ &mov (&DWP($i+4,"edi"),"ebx");
+ &or ("ebp","ebx") if ($i>=64);
+ &mov (&DWP($i+8,"edi"),"ecx");
+ &or ("ebp","ecx") if ($i>=64);
+ &mov (&DWP($i+12,"edi"),"edx");
+ &or ("ebp","edx") if ($i>=64);
+ }
+ &xor ("eax","eax");
+ &mov ("esi",&wparam(2));
+ &sub ("eax","ebp");
+ &or ("ebp","eax");
+ &sar ("ebp",31);
+ &mov (&DWP(32*15+0,"esp"),"ebp"); # !in1infty
+
+ &lea ("edi",&DWP($in2_x,"esp"));
+ for($i=0;$i<64;$i+=16) {
+ &mov ("eax",&DWP($i+0,"esi")); # copy in2
+ &mov ("ebx",&DWP($i+4,"esi"));
+ &mov ("ecx",&DWP($i+8,"esi"));
+ &mov ("edx",&DWP($i+12,"esi"));
+ &mov (&DWP($i+0,"edi"),"eax");
+ &mov ("ebp","eax") if ($i==0);
+ &or ("ebp","eax") if ($i!=0);
+ &mov (&DWP($i+4,"edi"),"ebx");
+ &or ("ebp","ebx");
+ &mov (&DWP($i+8,"edi"),"ecx");
+ &or ("ebp","ecx");
+ &mov (&DWP($i+12,"edi"),"edx");
+ &or ("ebp","edx");
+ }
+ &xor ("ebx","ebx");
+ &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy
+ &sub ("ebx","ebp");
+ &lea ("esi",&DWP($in1_z,"esp"));
+ &or ("ebx","ebp");
+ &lea ("ebp",&DWP($in1_z,"esp"));
+ &sar ("ebx",31);
+ &lea ("edi",&DWP($Z1sqr,"esp"));
+ &mov (&DWP(32*15+4,"esp"),"ebx"); # !in2infty
+
+ &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Z1sqr, in1_z);
+
+ &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy
+ &lea ("esi",&DWP($in2_x,"esp"));
+ &mov ("ebp","edi"); # %esi is stull &Z1sqr
+ &lea ("edi",&DWP($U2,"esp"));
+ &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(U2, Z1sqr, in2_x);
+
+ &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy
+ &lea ("esi",&DWP($in1_z,"esp"));
+ &lea ("ebp",&DWP($Z1sqr,"esp"));
+ &lea ("edi",&DWP($S2,"esp"));
+ &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S2, Z1sqr, in1_z);
+
+ &lea ("esi",&DWP($U2,"esp"));
+ &lea ("ebp",&DWP($in1_x,"esp"));
+ &lea ("edi",&DWP($H,"esp"));
+ &call ("_ecp_nistz256_sub"); # p256_sub(H, U2, in1_x);
+
+ &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy
+ &lea ("esi",&DWP($in2_y,"esp"));
+ &lea ("ebp",&DWP($S2,"esp"));
+ &lea ("edi",&DWP($S2,"esp"));
+ &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S2, S2, in2_y);
+
+ &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy
+ &lea ("esi",&DWP($in1_z,"esp"));
+ &lea ("ebp",&DWP($H,"esp"));
+ &lea ("edi",&DWP($res_z,"esp"));
+ &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(res_z, H, in1_z);
+
+ &lea ("esi",&DWP($S2,"esp"));
+ &lea ("ebp",&DWP($in1_y,"esp"));
+ &lea ("edi",&DWP($R,"esp"));
+ &call ("_ecp_nistz256_sub"); # p256_sub(R, S2, in1_y);
+
+ &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy
+ &lea ("esi",&DWP($H,"esp"));
+ &lea ("ebp",&DWP($H,"esp"));
+ &lea ("edi",&DWP($Hsqr,"esp"));
+ &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Hsqr, H);
+
+ &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy
+ &lea ("esi",&DWP($R,"esp"));
+ &lea ("ebp",&DWP($R,"esp"));
+ &lea ("edi",&DWP($Rsqr,"esp"));
+ &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Rsqr, R);
+
+ &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy
+ &lea ("esi",&DWP($in1_x,"esp"));
+ &lea ("ebp",&DWP($Hsqr,"esp"));
+ &lea ("edi",&DWP($U2,"esp"));
+ &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(U2, in1_x, Hsqr);
+
+ &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy
+ &lea ("esi",&DWP($H,"esp"));
+ &lea ("ebp",&DWP($Hsqr,"esp"));
+ &lea ("edi",&DWP($Hcub,"esp"));
+ &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(Hcub, Hsqr, H);
+
+ &lea ("esi",&DWP($U2,"esp"));
+ &lea ("ebp",&DWP($U2,"esp"));
+ &lea ("edi",&DWP($Hsqr,"esp"));
+ &call ("_ecp_nistz256_add"); # p256_mul_by_2(Hsqr, U2);
+
+ &lea ("esi",&DWP($Rsqr,"esp"));
+ &lea ("ebp",&DWP($Hsqr,"esp"));
+ &lea ("edi",&DWP($res_x,"esp"));
+ &call ("_ecp_nistz256_sub"); # p256_sub(res_x, Rsqr, Hsqr);
+
+ &lea ("esi",&DWP($res_x,"esp"));
+ &lea ("ebp",&DWP($Hcub,"esp"));
+ &lea ("edi",&DWP($res_x,"esp"));
+ &call ("_ecp_nistz256_sub"); # p256_sub(res_x, res_x, Hcub);
+
+ &lea ("esi",&DWP($U2,"esp"));
+ &lea ("ebp",&DWP($res_x,"esp"));
+ &lea ("edi",&DWP($res_y,"esp"));
+ &call ("_ecp_nistz256_sub"); # p256_sub(res_y, U2, res_x);
+
+ &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy
+ &lea ("esi",&DWP($Hcub,"esp"));
+ &lea ("ebp",&DWP($in1_y,"esp"));
+ &lea ("edi",&DWP($S2,"esp"));
+ &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S2, Hcub, in1_y);
+
+ &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy
+ &lea ("esi",&DWP($R,"esp"));
+ &lea ("ebp",&DWP($res_y,"esp"));
+ &lea ("edi",&DWP($res_y,"esp"));
+ &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(res_y, res_y, R);
+
+ &lea ("esi",&DWP($res_y,"esp"));
+ &lea ("ebp",&DWP($S2,"esp"));
+ &lea ("edi",&DWP($res_y,"esp"));
+ &call ("_ecp_nistz256_sub"); # p256_sub(res_y, res_y, S2);
+
+ &mov ("ebp",&DWP(32*15+0,"esp")); # !in1infty
+ &mov ("esi",&DWP(32*15+4,"esp")); # !in2infty
+ &mov ("edi",&wparam(0));
+ &mov ("edx","ebp");
+ &not ("ebp");
+ &and ("edx","esi");
+ &and ("ebp","esi");
+ &not ("esi");
+
+ ########################################
+ # conditional moves
+ for($i=64;$i<96;$i+=4) {
+ my $one=@ONE_mont[($i-64)/4];
+
+ &mov ("eax","edx");
+ &and ("eax",&DWP($res_x+$i,"esp"));
+ &mov ("ebx","ebp") if ($one && $one!=-1);
+ &and ("ebx",$one) if ($one && $one!=-1);
+ &mov ("ecx","esi");
+ &and ("ecx",&DWP($in1_x+$i,"esp"));
+ &or ("eax",$one==-1?"ebp":"ebx") if ($one);
+ &or ("eax","ecx");
+ &mov (&DWP($i,"edi"),"eax");
+ }
+ for($i=0;$i<64;$i+=4) {
+ &mov ("eax","edx");
+ &and ("eax",&DWP($res_x+$i,"esp"));
+ &mov ("ebx","ebp");
+ &and ("ebx",&DWP($in2_x+$i,"esp"));
+ &mov ("ecx","esi");
+ &and ("ecx",&DWP($in1_x+$i,"esp"));
+ &or ("eax","ebx");
+ &or ("eax","ecx");
+ &mov (&DWP($i,"edi"),"eax");
+ }
+ &stack_pop(8*15+3);
+} &function_end("ecp_nistz256_point_add_affine");
+
+&asm_finish();
+
+close STDOUT;