aboutsummaryrefslogtreecommitdiff
path: root/gnu/packages/machine-learning.scm
diff options
context:
space:
mode:
Diffstat (limited to 'gnu/packages/machine-learning.scm')
-rw-r--r--gnu/packages/machine-learning.scm72
1 files changed, 72 insertions, 0 deletions
diff --git a/gnu/packages/machine-learning.scm b/gnu/packages/machine-learning.scm
index 34b522c99b..f1d0922ef2 100644
--- a/gnu/packages/machine-learning.scm
+++ b/gnu/packages/machine-learning.scm
@@ -65,6 +65,7 @@
#:use-module (gnu packages gstreamer)
#:use-module (gnu packages image)
#:use-module (gnu packages linux)
+ #:use-module (gnu packages llvm)
#:use-module (gnu packages maths)
#:use-module (gnu packages mpi)
#:use-module (gnu packages ocaml)
@@ -869,6 +870,77 @@ data analysis.")
(base32
"08zbzi8yx5wdlxfx9jap61vg1malc9ajf576w7a0liv6jvvrxlpj")))))))
+(define-public python-pynndescent
+ (package
+ (name "python-pynndescent")
+ (version "0.4.8")
+ (source
+ (origin
+ (method url-fetch)
+ (uri (pypi-uri "pynndescent" version))
+ (sha256
+ (base32 "0li1fclif50v6xrq7wh3lif9vv5jpj7xhrb0z6g89wwjnp9b9833"))))
+ (build-system python-build-system)
+ (native-inputs
+ `(("python-nose" ,python-nose)))
+ (propagated-inputs
+ `(("python-joblib" ,python-joblib)
+ ("python-llvmlite" ,python-llvmlite)
+ ("python-numba" ,python-numba)
+ ("python-scikit-learn" ,python-scikit-learn)
+ ("python-scipy" ,python-scipy)))
+ (home-page "https://github.com/lmcinnes/pynndescent")
+ (synopsis "Nearest neighbor descent for approximate nearest neighbors")
+ (description
+ "PyNNDescent provides a Python implementation of Nearest Neighbor Descent
+for k-neighbor-graph construction and approximate nearest neighbor search.")
+ (license license:bsd-2)))
+
+(define-public python-opentsne
+ (package
+ (name "python-opentsne")
+ (version "0.4.4")
+ (source
+ (origin
+ ;; No tests in the PyPI tarball.
+ (method git-fetch)
+ (uri (git-reference
+ (url "https://github.com/pavlin-policar/openTSNE")
+ (commit (string-append "v" version))))
+ (file-name (string-append name "-" version "-checkout"))
+ (sha256
+ (base32 "08wamsssmyf6511cbmglm67dp48i6xazs89m1cskdk219v90bc76"))))
+ (build-system python-build-system)
+ (arguments
+ `(#:phases
+ (modify-phases %standard-phases
+ ;; Benchmarks require the 'macosko2015' data files.
+ (add-after 'unpack 'delete-benchmark
+ (lambda _
+ (delete-file-recursively "benchmarks")
+ #t))
+ ;; Numba needs a writable dir to cache functions.
+ (add-before 'check 'set-numba-cache-dir
+ (lambda _
+ (setenv "NUMBA_CACHE_DIR" "/tmp")
+ #t)))))
+ (native-inputs
+ `(("python-cython" ,python-cython)))
+ (inputs
+ `(("fftw" ,fftw)))
+ (propagated-inputs
+ `(("python-numpy" ,python-numpy)
+ ("python-pynndescent" ,python-pynndescent)
+ ("python-scikit-learn" ,python-scikit-learn)
+ ("python-scipy" ,python-scipy)))
+ (home-page "https://github.com/pavlin-policar/openTSNE")
+ (synopsis "Extensible, parallel implementations of t-SNE")
+ (description
+ "This is a modular Python implementation of t-Distributed Stochastic
+Neighbor Embedding (t-SNE), a popular dimensionality-reduction algorithm for
+visualizing high-dimensional data sets.")
+ (license license:bsd-3)))
+
(define-public python-scikit-rebate
(package
(name "python-scikit-rebate")