aboutsummaryrefslogtreecommitdiff
path: root/gnu
diff options
context:
space:
mode:
authorSpencer King <spencer.king@geneoscopy.com>2024-02-27 22:03:12 +0000
committerLudovic Courtès <ludo@gnu.org>2024-03-02 16:10:53 +0100
commit080d2dbcb5a6f25644afe2e4c6c5fa91c2c93b42 (patch)
tree9b14a0ce6122340adaecc530bfc602ae04c1e704 /gnu
parentedde7ee1bcb098663038014190e79578ed0d99db (diff)
downloadguix-080d2dbcb5a6f25644afe2e4c6c5fa91c2c93b42.tar.gz
guix-080d2dbcb5a6f25644afe2e4c6c5fa91c2c93b42.zip
gnu: Add python-mord.
* gnu/packages/machine-learning.scm (python-mord): New variable. Change-Id: I1a495fece72a0b998a69cb518544ed8835b12a40 Signed-off-by: Ludovic Courtès <ludo@gnu.org>
Diffstat (limited to 'gnu')
-rw-r--r--gnu/packages/machine-learning.scm24
1 files changed, 24 insertions, 0 deletions
diff --git a/gnu/packages/machine-learning.scm b/gnu/packages/machine-learning.scm
index 6e94e21f3e..e758132d31 100644
--- a/gnu/packages/machine-learning.scm
+++ b/gnu/packages/machine-learning.scm
@@ -26,6 +26,7 @@
;;; Copyright © 2024 Sharlatan Hellseher <sharlatanus@gmail.com>
;;; Copyright © 2024 David Pflug <david@pflug.io>
;;; Copyright © 2024 Timothee Mathieu <timothee.mathieu@inria.fr>
+;;; Copyright © 2024 Spencer King <spencer.king@geneoscopy.com>
;;;
;;; This file is part of GNU Guix.
;;;
@@ -1782,6 +1783,29 @@ scikit-learn inclusion criteria, for instance due to their novelty or lower
citation number.")
(license license:bsd-3))))
+(define-public python-mord
+ (package
+ (name "python-mord")
+ (version "0.7")
+ (source
+ (origin
+ (method url-fetch)
+ (uri (pypi-uri "mord" version))
+ (sha256
+ (base32 "1cvv9b9w69v0inq0zgcw0vmkiq3zn9q9r6clkynpzjik9rrh405n"))))
+ (build-system pyproject-build-system)
+ ;; v0.7 does not provide any test cases
+ ;; v0.6 relies on deprecated scikit-learn functionality
+ (arguments `(#:tests? #f))
+ (inputs (list python-numpy python-scipy python-scikit-learn))
+ (home-page "https://pypi.org/project/mord/")
+ (synopsis "Ordinal regression models for scikit-learn")
+ (description
+ "This package provides a collection of ordinal regression models for
+machine learning in Python. They are intended to be used with scikit-learn
+and are compatible with its API.")
+ (license license:bsd-3)))
+
(define-public python-thinc
(package
(name "python-thinc")