aboutsummaryrefslogtreecommitdiff
path: root/gnu/packages
diff options
context:
space:
mode:
authorRicardo Wurmus <rekado@elephly.net>2024-01-18 14:27:37 +0100
committerRicardo Wurmus <rekado@elephly.net>2024-01-18 16:01:54 +0100
commitf6f48b13e5b182a3284d15ff626bdb5531c69e03 (patch)
treea5c2c29c5e1b4e40e0c012bd59ee912d07512a0d /gnu/packages
parent48b5e885182738fe28bed2d1b45e91be95dce67c (diff)
downloadguix-f6f48b13e5b182a3284d15ff626bdb5531c69e03.tar.gz
guix-f6f48b13e5b182a3284d15ff626bdb5531c69e03.zip
gnu: Add r-rocit.
* gnu/packages/cran.scm (r-rocit): New variable. Change-Id: I255db21624dd3684d38748ce42ce71e8fa9fb73b
Diffstat (limited to 'gnu/packages')
-rw-r--r--gnu/packages/cran.scm29
1 files changed, 29 insertions, 0 deletions
diff --git a/gnu/packages/cran.scm b/gnu/packages/cran.scm
index 101d4fc1ca..d6fccb125e 100644
--- a/gnu/packages/cran.scm
+++ b/gnu/packages/cran.scm
@@ -1529,6 +1529,35 @@ allows transformation of geographic coordinates from one projection and/or
datum to another.")
(license license:gpl2)))
+(define-public r-rocit
+ (package
+ (name "r-rocit")
+ (version "2.1.1")
+ (source
+ (origin
+ (method url-fetch)
+ (uri (cran-uri "ROCit" version))
+ (sha256
+ (base32 "0sd6ckh7k8aqwhzzp3qff6g7d03klbr0mbp403pib3823c8pqa55"))))
+ (properties `((upstream-name . "ROCit")))
+ (build-system r-build-system)
+ (native-inputs (list r-knitr))
+ (home-page "https://cran.r-project.org/package=ROCit")
+ (synopsis "Performance Assessment of Binary Classifier with Visualization")
+ (description
+ "Sensitivity (or recall or true positive rate), false positive rate,
+specificity, precision (or positive predictive value), negative predictive
+value, misclassification rate, accuracy, F-score---these are popular metrics
+for assessing performance of binary classifiers for certain thresholds. These
+metrics are calculated at certain threshold values. @dfn{Receiver operating
+characteristic} (ROC) curve is a common tool for assessing overall diagnostic
+ability of the binary classifier. Unlike depending on a certain threshold,
+area under ROC curve (also known as AUC), is a summary statistic about how
+well a binary classifier performs overall for the classification task. The
+ROCit package provides flexibility to easily evaluate threshold-bound
+metrics.")
+ (license license:gpl3)))
+
(define-public r-rorcid
(package
(name "r-rorcid")