diff options
author | Ricardo Wurmus <rekado@elephly.net> | 2019-12-14 13:34:09 +0100 |
---|---|---|
committer | Ricardo Wurmus <rekado@elephly.net> | 2019-12-14 13:35:58 +0100 |
commit | c67508079d2abf9b286812c3b2889f4bbbcf2735 (patch) | |
tree | 0f91fd08a690f98b006eb13adac9d7b9d6f855fb /gnu/packages/cran.scm | |
parent | c71724653ab2b75ef533e9b9920e7b3f735154ad (diff) | |
download | guix-c67508079d2abf9b286812c3b2889f4bbbcf2735.tar.gz guix-c67508079d2abf9b286812c3b2889f4bbbcf2735.zip |
gnu: Add r-anthropometry.
* gnu/packages/cran.scm (r-anthropometry): New variable.
Diffstat (limited to 'gnu/packages/cran.scm')
-rw-r--r-- | gnu/packages/cran.scm | 33 |
1 files changed, 33 insertions, 0 deletions
diff --git a/gnu/packages/cran.scm b/gnu/packages/cran.scm index 6ef9f2e680..9e11802224 100644 --- a/gnu/packages/cran.scm +++ b/gnu/packages/cran.scm @@ -18592,3 +18592,36 @@ transformation grids and comparing covariance matrices. See Dryden, I.L. and Mardia, K.V. (2016). Statistical shape analysis, with Applications in R (2nd Edition), John Wiley and Sons.") (license license:gpl2))) + +(define-public r-anthropometry + (package + (name "r-anthropometry") + (version "1.13") + (source + (origin + (method url-fetch) + (uri (cran-uri "Anthropometry" version)) + (sha256 + (base32 + "1f568ri1s6psaby8y737vrkarbjg64v89d4jyw23hy17apdmszr8")))) + (properties `((upstream-name . "Anthropometry"))) + (build-system r-build-system) + (propagated-inputs + `(("r-archetypes" ,r-archetypes) + ("r-biclust" ,r-biclust) + ("r-cluster" ,r-cluster) + ("r-depth" ,r-depth) + ("r-fnn" ,r-fnn) + ("r-icge" ,r-icge) + ("r-nnls" ,r-nnls) + ("r-rgl" ,r-rgl) + ("r-shapes" ,r-shapes))) + (home-page "https://cran.r-project.org/web/packages/Anthropometry/") + (synopsis "Statistical methods for anthropometric data") + (description + "This package provides statistical methods especially developed to +analyze anthropometric data. These methods are aimed at providing effective +solutions to some commons problems related to Ergonomics and Anthropometry. +They are based on clustering, the statistical concept of data depth, +statistical shape analysis and archetypal analysis.") + (license license:gpl2+))) |