aboutsummaryrefslogtreecommitdiff
path: root/gnu/packages/cran.scm
diff options
context:
space:
mode:
authorAfkhami, Navid <Navid.Afkhami@mdc-berlin.de>2023-11-02 17:13:49 +0000
committerRicardo Wurmus <rekado@elephly.net>2023-11-02 18:34:09 +0100
commit64dbce8381f2f81826a8125e5857e4f8248f1579 (patch)
tree0b62e2337ee49770931f9024bc7edea538ff9f1f /gnu/packages/cran.scm
parentf5346094f0365a2c04ca00111ff06e17dac832e2 (diff)
downloadguix-64dbce8381f2f81826a8125e5857e4f8248f1579.tar.gz
guix-64dbce8381f2f81826a8125e5857e4f8248f1579.zip
gnu: Add r-nestedcv.
* gnu/packages/cran.scm (r-nestedcv): New variable. Change-Id: Id998b4192565c220f8d238963ef61217aed12bd3
Diffstat (limited to 'gnu/packages/cran.scm')
-rw-r--r--gnu/packages/cran.scm37
1 files changed, 37 insertions, 0 deletions
diff --git a/gnu/packages/cran.scm b/gnu/packages/cran.scm
index e82b027052..2cac3a75c0 100644
--- a/gnu/packages/cran.scm
+++ b/gnu/packages/cran.scm
@@ -10007,6 +10007,43 @@ implementation of an approximate nearest neighbor search using hierarchical
@acronym{NSW, Navigable Small World} graphs.")
(license license:asl2.0)))
+(define-public r-nestedcv
+ (package
+ (name "r-nestedcv")
+ (version "0.7.0")
+ (source
+ (origin
+ (method url-fetch)
+ (uri (cran-uri "nestedcv" version))
+ (sha256
+ (base32 "0jpg4il1niyizfq8kkk391x7anhp2s38mrfypa86skr08ca46zss"))))
+ (properties `((upstream-name . "nestedcv")))
+ (build-system r-build-system)
+ (propagated-inputs (list r-caret
+ r-data-table
+ r-doparallel
+ r-foreach
+ r-ggplot2
+ r-glmnet
+ r-matrixstats
+ r-matrixtests
+ r-proc
+ r-rfast
+ r-rlang))
+ (native-inputs (list r-knitr))
+ (home-page "https://github.com/myles-lewis/nestedcv")
+ (synopsis "Nested cross-validation with glmnet and caret")
+ (description
+ "This package implements nested cross-validation applied to the
+@code{glmnet} and @code{caret} packages. With glmnet this includes
+cross-validation of elastic net alpha parameter. A number of feature
+selection filter functions (t-test, Wilcoxon test, ANOVA, Pearson/Spearman
+correlation, random forest, ReliefF) for feature selection are provided and
+can be embedded within the outer loop of the nested CV. Nested CV can be also
+be performed with the @code{caret} package giving access to the large number
+of prediction methods available in @code{caret}.")
+ (license license:expat)))
+
(define-public r-network
(package
(name "r-network")