aboutsummaryrefslogtreecommitdiff
path: root/gnu/packages/bioinformatics.scm
diff options
context:
space:
mode:
authorzimoun <zimon.toutoune@gmail.com>2021-05-21 22:26:02 +0200
committerRicardo Wurmus <rekado@elephly.net>2021-05-31 15:37:59 +0200
commit8d4311bb8e0e7ae68f0182bf232f598ebe2835e5 (patch)
treee5d962fc69035572f60798ab903b0c2d05bfe67a /gnu/packages/bioinformatics.scm
parent96ae9822c4c641587ea151e6a58eddbdb6e66590 (diff)
downloadguix-8d4311bb8e0e7ae68f0182bf232f598ebe2835e5.tar.gz
guix-8d4311bb8e0e7ae68f0182bf232f598ebe2835e5.zip
gnu: r-vsn: Move to (gnu packages bioconductor).
* gnu/packages/bioinformatics.scm (r-vsn): Move from here... * gnu/packages/bioconductor.scm (r-vsn): ...to here.
Diffstat (limited to 'gnu/packages/bioinformatics.scm')
-rw-r--r--gnu/packages/bioinformatics.scm36
1 files changed, 0 insertions, 36 deletions
diff --git a/gnu/packages/bioinformatics.scm b/gnu/packages/bioinformatics.scm
index 0dd362c8ee..d133764963 100644
--- a/gnu/packages/bioinformatics.scm
+++ b/gnu/packages/bioinformatics.scm
@@ -9108,42 +9108,6 @@ proteowizard library for mzML and mzIdentML. The netCDF reading code has
previously been used in XCMS.")
(license license:artistic2.0)))
-(define-public r-vsn
- (package
- (name "r-vsn")
- (version "3.58.0")
- (source
- (origin
- (method url-fetch)
- (uri (bioconductor-uri "vsn" version))
- (sha256
- (base32
- "0dfrfflidpnphwyqzmmfiz9blfqv6qa09xlwgfabhpfsf3ml2rlb"))))
- (build-system r-build-system)
- (propagated-inputs
- `(("r-affy" ,r-affy)
- ("r-biobase" ,r-biobase)
- ("r-ggplot2" ,r-ggplot2)
- ("r-lattice" ,r-lattice)
- ("r-limma" ,r-limma)))
- (native-inputs
- `(("r-knitr" ,r-knitr))) ; for vignettes
- (home-page "https://bioconductor.org/packages/release/bioc/html/vsn.html")
- (synopsis "Variance stabilization and calibration for microarray data")
- (description
- "The package implements a method for normalising microarray intensities,
-and works for single- and multiple-color arrays. It can also be used for data
-from other technologies, as long as they have similar format. The method uses
-a robust variant of the maximum-likelihood estimator for an
-additive-multiplicative error model and affine calibration. The model
-incorporates data calibration step (a.k.a. normalization), a model for the
-dependence of the variance on the mean intensity and a variance stabilizing
-data transformation. Differences between transformed intensities are
-analogous to \"normalized log-ratios\". However, in contrast to the latter,
-their variance is independent of the mean, and they are usually more sensitive
-and specific in detecting differential transcription.")
- (license license:artistic2.0)))
-
(define-public r-ensembldb
(package
(name "r-ensembldb")