aboutsummaryrefslogtreecommitdiff
path: root/gnu/build/icecat-extension.scm
diff options
context:
space:
mode:
authorMaxim Cournoyer <maxim.cournoyer@gmail.com>2024-12-18 22:57:46 +0900
committerMaxim Cournoyer <maxim.cournoyer@gmail.com>2024-12-18 23:28:18 +0900
commit118d6429c8e7d4fce19da569da959ca753edb087 (patch)
treeae14b7fee701dd5810569ef71ef012ba35de3e22 /gnu/build/icecat-extension.scm
parent2dc4a9cca3f297842be676b88cad64eed30c753f (diff)
downloadguix-118d6429c8e7d4fce19da569da959ca753edb087.tar.gz
guix-118d6429c8e7d4fce19da569da959ca753edb087.zip
system/examples: Use latest QEMU for hurd examples.
* gnu/system/examples/bare-hurd64.tmpl: Replace qemu@7 with qemu in invocation example. * gnu/system/examples/devel-hurd64.tmpl: Likewise. Change-Id: I3cdbff6f68b810feff1d9b2929a323498af3fd29
Diffstat (limited to 'gnu/build/icecat-extension.scm')
0 files changed, 0 insertions, 0 deletions
fpphphgjgb36p0kv50kwfyqncf0y12f16v8ydyiaw")))) (build-system gnu-build-system) (home-page "http://home.gna.org/gdsl/") (synopsis "Generic data structures library") (description "The Generic Data Structures Library (GDSL) is a collection of routines for generic data structures manipulation. It is a re-entrant library fully written from scratch in pure ANSI C. It is designed to offer for C programmers common data structures with powerful algorithms, and hidden implementation. Available structures are lists, queues, stacks, hash tables, binary trees, binary search trees, red-black trees, 2D arrays, permutations and heaps.") (license license:gpl2+))) (define-public sparsehash (package (name "sparsehash") (version "2.0.3") (source (origin (method url-fetch) (uri (string-append "https://github.com/sparsehash/sparsehash/" "archive/sparsehash-" version ".tar.gz")) (sha256 (base32 "133szz0ldwch0kd91l0sa57qsnl020njn622szd9cxrjqyjqds85")))) (build-system gnu-build-system) (synopsis "Memory-efficient hashtable implementations") (description "This library contains several hash-map implementations, similar in API to SGI's @code{hash_map} class, but with different performance characteristics. @code{sparse_hash_map} uses very little space overhead, 1-2 bits per entry. @code{dense_hash_map} is very fast, particulary on lookup. @code{sparse_hash_set} and @code{dense_hash_set} are the set versions of these routines. All these implementation use a hashtable with internal quadratic probing. This method is space-efficient -- there is no pointer overhead -- and time-efficient for good hash functions.") (home-page "https://github.com/sparsehash/sparsehash") (license license:bsd-3)))