aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorNavid Afkhami <navid.afkhami@mdc-berlin.de>2025-05-21 16:01:01 +0200
committerRicardo Wurmus <rekado@elephly.net>2025-05-21 17:15:58 +0200
commitd3d157bc61c4a6a3fac11e33d26f6f2a72a24151 (patch)
tree32240328a279720abe2c9b40bcd134313c50ec86
parent646fef769d995122cca8f2aa2c82fa4cd32fb609 (diff)
downloadguix-d3d157bc61c4a6a3fac11e33d26f6f2a72a24151.tar.gz
guix-d3d157bc61c4a6a3fac11e33d26f6f2a72a24151.zip
gnu: Add python-torchdiffeq.
* gnu/packages/machine-learning.scm (python-torchdiffeq): New variable. Change-Id: Ic2ab73250b60f1733d2721ebd6d3abae719c5a1f
-rw-r--r--gnu/packages/machine-learning.scm31
1 files changed, 31 insertions, 0 deletions
diff --git a/gnu/packages/machine-learning.scm b/gnu/packages/machine-learning.scm
index 837aa02efa..bd090d63b1 100644
--- a/gnu/packages/machine-learning.scm
+++ b/gnu/packages/machine-learning.scm
@@ -2554,6 +2554,37 @@ forward-mode differentiation, and the two can be composed arbitrarily. The
main intended application of Autograd is gradient-based optimization.")
(license license:expat)))
+(define-public python-torchdiffeq
+ ;; There are neither releases nor tags.
+ (let ((commit "a88aac53cae738addee44251288ce5be9a018af3")
+ (revision "0"))
+ (package
+ (name "python-torchdiffeq")
+ (version (git-version "0.2.5" revision commit))
+ (source
+ (origin
+ (method git-fetch)
+ (uri (git-reference
+ (url "https://github.com/rtqichen/torchdiffeq")
+ (commit commit)))
+ (file-name (git-file-name name version))
+ (sha256
+ (base32 "0c2zqbdxqvd5abfpk0im6rcy1ij39xvrmixc6l9znb6bhcxk2jra"))))
+ (build-system pyproject-build-system)
+ (arguments
+ (list
+ #:test-flags
+ '(list "-k" "not test_seminorm" "tests/run_all.py")))
+ (propagated-inputs (list python-numpy python-scipy python-pytorch))
+ (native-inputs (list python-pytest python-setuptools))
+ (home-page "https://github.com/rtqichen/torchdiffeq")
+ (synopsis "ODE solvers and adjoint sensitivity analysis in PyTorch")
+ (description
+ "This tool provides ordinary differential equation solvers implemented
+in PyTorch. Backpropagation through ODE solutions is supported using the
+adjoint method for constant memory cost.")
+ (license license:expat))))
+
(define-public lightgbm
(package
(name "lightgbm")