diff options
author | Navid Afkhami <navid.afkhami@mdc-berlin.de> | 2025-05-21 16:01:01 +0200 |
---|---|---|
committer | Ricardo Wurmus <rekado@elephly.net> | 2025-05-21 17:15:58 +0200 |
commit | d3d157bc61c4a6a3fac11e33d26f6f2a72a24151 (patch) | |
tree | 32240328a279720abe2c9b40bcd134313c50ec86 | |
parent | 646fef769d995122cca8f2aa2c82fa4cd32fb609 (diff) | |
download | guix-d3d157bc61c4a6a3fac11e33d26f6f2a72a24151.tar.gz guix-d3d157bc61c4a6a3fac11e33d26f6f2a72a24151.zip |
gnu: Add python-torchdiffeq.
* gnu/packages/machine-learning.scm (python-torchdiffeq): New variable.
Change-Id: Ic2ab73250b60f1733d2721ebd6d3abae719c5a1f
-rw-r--r-- | gnu/packages/machine-learning.scm | 31 |
1 files changed, 31 insertions, 0 deletions
diff --git a/gnu/packages/machine-learning.scm b/gnu/packages/machine-learning.scm index 837aa02efa..bd090d63b1 100644 --- a/gnu/packages/machine-learning.scm +++ b/gnu/packages/machine-learning.scm @@ -2554,6 +2554,37 @@ forward-mode differentiation, and the two can be composed arbitrarily. The main intended application of Autograd is gradient-based optimization.") (license license:expat))) +(define-public python-torchdiffeq + ;; There are neither releases nor tags. + (let ((commit "a88aac53cae738addee44251288ce5be9a018af3") + (revision "0")) + (package + (name "python-torchdiffeq") + (version (git-version "0.2.5" revision commit)) + (source + (origin + (method git-fetch) + (uri (git-reference + (url "https://github.com/rtqichen/torchdiffeq") + (commit commit))) + (file-name (git-file-name name version)) + (sha256 + (base32 "0c2zqbdxqvd5abfpk0im6rcy1ij39xvrmixc6l9znb6bhcxk2jra")))) + (build-system pyproject-build-system) + (arguments + (list + #:test-flags + '(list "-k" "not test_seminorm" "tests/run_all.py"))) + (propagated-inputs (list python-numpy python-scipy python-pytorch)) + (native-inputs (list python-pytest python-setuptools)) + (home-page "https://github.com/rtqichen/torchdiffeq") + (synopsis "ODE solvers and adjoint sensitivity analysis in PyTorch") + (description + "This tool provides ordinary differential equation solvers implemented +in PyTorch. Backpropagation through ODE solutions is supported using the +adjoint method for constant memory cost.") + (license license:expat)))) + (define-public lightgbm (package (name "lightgbm") |