aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorNavid Afkhami <navid.afkhami@mdc-berlin.de>2023-06-23 13:48:48 +0000
committerRicardo Wurmus <rekado@elephly.net>2023-07-03 09:47:15 +0200
commit3f055028ac202763534bb203ebf3edd6a8eeedfb (patch)
treeed8efd5b6df01cc9f855e65da9d7697955982bcc
parent155e3f2e87956a91412a79f1462863da4630e6c5 (diff)
downloadguix-3f055028ac202763534bb203ebf3edd6a8eeedfb.tar.gz
guix-3f055028ac202763534bb203ebf3edd6a8eeedfb.zip
gnu: Add r-mlr.
* gnu/packages/cran.scm (r-mlr): New variable.
-rw-r--r--gnu/packages/cran.scm56
1 files changed, 56 insertions, 0 deletions
diff --git a/gnu/packages/cran.scm b/gnu/packages/cran.scm
index 22f2519a56..a4c5a9f01e 100644
--- a/gnu/packages/cran.scm
+++ b/gnu/packages/cran.scm
@@ -35250,6 +35250,62 @@ well as email and push notifications.")
\"Discovering Motifs in Ranked Lists of DNA Sequences\" by Eran Eden.")
(license license:gpl2)))
+(define-public r-mlr
+ (package
+ (name "r-mlr")
+ (version "2.19.1")
+ (source (origin
+ (method url-fetch)
+ (uri (cran-uri "mlr" version))
+ (sha256
+ (base32
+ "00jjhvaqifj6glqsyzixlp56bvlch5smck8kk3klcmwx9pasyllx"))))
+ (properties `((upstream-name . "mlr")))
+ (build-system r-build-system)
+ (inputs (list gdal
+ geos
+ glu
+ gmp
+ gsl
+ jags
+ mpfr
+ openmpi
+ proj
+ udunits))
+ (propagated-inputs (list r-backports
+ r-bbmisc
+ r-checkmate
+ r-data-table
+ r-ggplot2
+ r-parallelmap
+ r-paramhelpers
+ r-stringi
+ r-survival
+ r-xml))
+ (native-inputs (list r-knitr))
+ (home-page "https://mlr.mlr-org.com")
+ (synopsis "Machine learning in R")
+ (description
+ "This package provides an interface to a large number of classification
+and regression techniques. These techniques include machine-readable
+parameter descriptions. There is also an experimental extension for survival
+analysis, clustering and general, example-specific cost-sensitive learning.
+Also included:
+
+@itemize
+
+@item Generic resampling, including cross-validation, bootstrapping and
+ subsampling;
+@item Hyperparameter tuning with modern optimization techniques, for single-
+ and multi-objective problems;
+@item Filter and wrapper methods for feature selection;
+@item Extension of basic learners with additional operations common in machine
+ learning, also allowing for easy nested resampling.
+@end itemize
+
+Most operations can be parallelized.")
+ (license license:bsd-2)))
+
(define-public r-mlr3measures
(package
(name "r-mlr3measures")