summaryrefslogtreecommitdiff
path: root/techniques_table.py
blob: 9ea23ef2817515bf18b49815aa255c90544f887a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#!/usr/bin/env python3

# SPDX-License-Identifier: CC0-1.0
#
# Copyright (C) 2024 Wojtek Kosior <koszko@koszko.org>

import yaml
import sys

CUTOFF_SCORE = 20

def read_APT_data(yaml_path):
    if yaml_path:
        with open(yaml_path) as inp:
            return yaml.safe_load(inp)
    else:
        return yaml.safe_load(sys.stdin)

profiles_data = read_APT_data(None if len(sys.argv) < 2 else sys.argv[1])

groups_by_origin = {}
groups_by_techniques_by_origin = {}

for group in profiles_data["groups"]:
    origin = group["origin"]
    groups_by_origin[origin] = groups_by_origin.get(origin, []) + [group]

    groups_by_technique = groups_by_techniques_by_origin.get(origin, {})
    for tid in group["technique_ids"]:
        groups_by_technique[tid] = groups_by_technique.get(tid, []) + [group]
    groups_by_techniques_by_origin[origin] = groups_by_technique

def group_name_list(origin, tid):
    return ", ".join(sorted(
        g["name"]
        for g in groups_by_techniques_by_origin[origin].get(tid, [])
    ))

def technique_use_percent(tid, origin):
    return (100 * len(groups_by_techniques_by_origin[origin].get(tid, [])) /
            len(groups_by_origin[origin]))

def technique_popularity_score(tid):
    return sum(technique_use_percent(tid, origin)
               for origin in groups_by_origin)

all_tids = sorted(set().union(*groups_by_techniques_by_origin.values()),
                  key=technique_popularity_score,
                  reverse=True)
all_tids = [tid for tid in all_tids
            if technique_popularity_score(tid) >= CUTOFF_SCORE]

all_origins = sorted(groups_by_origin)

technique_names = dict((t["mitre_id"], t["name"])
                       for t in profiles_data["techniques"])

origin_heads = ' & '.join(
    f"\\nohyphens{{\\bfseries {text}}}" for text in all_origins
)
head = f"""\
\\rowcolor{{gray!40}}
\\bfseries Technique & {origin_heads} & \\bfseries total APT count \\\\"""

print("""\
{
\\footnotesize

\\begin{longtable}{>{\\raggedright\\arraybackslash}p{1.2in} p{0.76in} p{0.76in} p{0.76in} p{0.76in} >{\centering\\arraybackslash} p{0.65in} }

\\rowcolor{white}
\\caption{\\nexttabcaption} \\label{\\nexttablabel} \\\\""")
print(head)
print("\\endfirsthead")
print(head)
print("""
\\endhead

\\rowcolor{white}
\\multicolumn{6}{r}{\\textit{Continued on next page}} \\\\
\\endfoot

\\endlastfoot""")

for tid in all_tids:
    name = technique_names[tid]
    group_count = sum([len(groups_by_techniques_by_origin[origin].get(tid, []))
                       for origin in all_origins])

    name_href_markup = \
        f"\\href{{https://attack.mitre.org/techniques/{tid}/}}{{{name}}}"
    group_precents_markup = ' & '.join(
        f"{round(technique_use_percent(tid, origin))}\\% groups"
        for origin in all_origins
    )

    print(f"{name_href_markup} & {group_precents_markup} & {group_count} \\\\")

print("\\end{longtable}")
print("}")