summaryrefslogtreecommitdiff
path: root/countries_motives_sectors_tables.py
blob: 196379e26f7bd97d8de13d84a0998a3d3918ee00 (about) (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
#!/usr/bin/env python3

# SPDX-License-Identifier: CC0-1.0
#
# Copyright (C) 2024, 2025 Wojtek Kosior <koszko@koszko.org>

import yaml
import sys

origin_labels = {
    "China": "China",
    "Iran": "Iran",
    "NorthKorea": "North Korea",
    "Russia": "Russia"
}

type_keys = {
    "country": "countries",
    "sector": "sectors",
    "motive": "motives"
}

trait_label_makers = {
    "country": (lambda country:
                {
                    "usa": "USA",
                    "uk": "UK",
                    "southkorea": "South Korea",
                    "saudiarabia": "Saudi Arabia",
                    "uae": "UAE",
                    "hongkong": "Hong Kong",
                    "northkorea": "North Korea"
                }.get(country, country[0].upper() + country[1:])),
    "sector": (lambda sector:
               {
                   "it": "IT",
                   "ngos": "NGOs",
                   "thinktanks": "think-tanks",
                   "bitcoinexchanges": "cryptocurrency",
                   "lawenforcement": "law enforcement"
               }.get(sector, sector)),
    "motive": (lambda motive:
               {
                   "informationtheftandespionage": "information theft and espionage",
                   "sabotageanddestruction": "sabotage and destruction",
                   "financialcrime": "financial crime"
               }[motive])
}

trait_filters = {
    "country": (lambda country, score:
                score >= 10 and country not in [
                    "europe", "eastasia", "others", "south", "worldwide",
                    "middleeast", "korea"
                ]),
    "sector": (lambda sector, score:
               score >= 10 and sector not in [
                   "sejonginstitute", "ministryofunification",
                   "koreainstitutefordefenseanalyses",
                   "chineseinstitutionsabroad"
                ]),
    "motive": (lambda motive, score: True)
}

def read_APT_data(yaml_path):
    if yaml_path:
        with open(yaml_path) as inp:
            return yaml.safe_load(inp)
    else:
        return yaml.safe_load(sys.stdin)

gpd_country_names = {
    "USA": "United States of America",
    "UK": "United Kingdom",
    "UAE": "United Arab Emirates",
    "Southafrica": "South Africa",
    "Newzealand": "New Zealand"
}

class Point:
    def __init__(self, x, y):
        self.x = x
        self.y = y

other_coords = {
    "Hong Kong": Point(114., 22.4),
    "Bahrain": Point(50.1, 26.2),
    "Singapore": Point(103.77, 1.21)
}

chart_colors = ["#af0000", "#dae84d", "#009f00", "#0000af"]

def plot_map(countries, targeting_percentages, dst_path="dst.svg"):
    import geopandas as gpd
    import matplotlib.pyplot as plt
    from matplotlib.colors import ListedColormap
    from matplotlib.patches import Patch
    import pandas as pd
    import math
    from pathlib import Path
    import os

    world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))
    world.plot(column='name', cmap=ListedColormap([[0.7, 0.7, 0.7]]))

    handles = [Patch(color=color, label=origin_label)
               for origin_label, color
               in zip(sorted(origin_labels.values()), chart_colors)]
    plt.legend(handles=handles, loc="lower right", fontsize="xx-small")
    plt.axis("off")
    plt.margins(x=0, y=0)
    plt.savefig("empty_world_map.svg", bbox_inches='tight', pad_inches=0)
    plt.close()

    os.system("head -n -1 empty_world_map.svg > target_map.svg")

    centroids = world.centroid
    centroid_list = pd.concat([world.name, centroids], axis=1)
    map_width = 357.12
    map_height = 172.521191
    paths_markup = []
    for country, percentages in zip(countries, targeting_percentages):
        country_label = trait_label_makers["country"](country)
        country_key = gpd_country_names.get(country_label, country_label)
        mask = centroid_list["name"] == country_key
        centroid_singleton_list = centroid_list[mask][0]
        if (len(centroid_singleton_list) == 1):
            point, = centroid_singleton_list
        else:
            point = other_coords.get(country_label, None)
            if not point:
                print(f"bad: {country_label}", file=sys.stderr)
                continue

        x = (point.x + 180) / 360 * map_width
        y = (-point.y + 90) / 180 * map_height
        # fix some vertical shift that occures for an unknown reason
        y -= 3.7
        radius = 4
        angle = math.pi * 3 / 2
        ratio = 2.

        for percentage, color in sorted(zip(percentages, chart_colors),
                                        key=lambda tup: tup[0],
                                        reverse=True):
            start_pos = [x+radius*math.cos(angle),
                         y+radius*math.sin(angle)]
            start_pos = " ".join(str(i) for i in start_pos)
            angle += percentage / 100 * math.pi / 2 * ratio
            end_pos = [x+radius*math.cos(angle),
                       y+radius*math.sin(angle)]
            end_pos = " ".join(str(i) for i in end_pos)
            paths_markup.append(f"""\
<path d="M{x} {y} {start_pos} A{radius} {radius} 0 0 1 {end_pos}Z"
      fill="{color}"/>
""")
    with open("target_map.svg", "a") as target_map:
        target_map.write("".join(paths_markup))
        target_map.write("""
 <defs>
   <style type="text/css">*{stroke-linejoin: round; stroke-linecap: butt}
   #PatchCollection_1 > path {stroke: #fff!important; stroke-width: 0.3!important;}
   </style>
 </defs>
</svg>""")

table_type = sys.argv[1] # "country", "sector" or "motive"

groups_data = read_APT_data(None if len(sys.argv) < 3 else sys.argv[2])

groups_by_origin = {}
groups_by_trait_by_origin = {}

# Hand-picked groups that appear not to be state-sponsored.
ignored_groups = [
    # We do not omit Wicked Spider because even tho it is not tagged as
    # state-sponsored in the PDF is seems to have ties with Chinese authorities.
    "Buhtrap", "Corkow", "FIN7", "Lurk", "MoneyTaker", "RTM", "Lunar Spider",
    "Rocke", "Wizard Spider", "TA505", "DoppelSpider", "Dungeon Spider",
    "GuruSpider", "Indrik Spider", "MontySpider", "OperationWindigo",
    "PachaGroup", "PinchySpider", "Rocke", "SaltySpider", "Yingmob",
    "ZombieSpider", "Avalanche", "Boss Spider", "CobaltGroup",
    "Cron", "GCMAN", "RetefeGang", "SharkSpider", "VenomSpider",
]

for group in groups_data["groups"]:
    if group["origin"] not in origin_labels or group["name"] in ignored_groups:
        continue

    origin = group["origin"]
    groups_by_origin[origin] = groups_by_origin.get(origin, []) + [group]

    groups_by_trait = groups_by_trait_by_origin.get(origin, {})
    for trait in group[type_keys[table_type]]:
        groups_by_trait[trait] = groups_by_trait.get(trait, []) + [group]
    groups_by_trait_by_origin[origin] = groups_by_trait

def trait_percent(trait, origin):
    return (100 * len(groups_by_trait_by_origin[origin].get(trait, [])) /
            len(groups_by_origin[origin]))

def trait_popularity_score(trait):
    return sum(trait_percent(trait, origin)
               for origin in groups_by_origin)

all_traits_set = set().union(*groups_by_trait_by_origin.values())
all_traits = sorted(((trait_popularity_score(trait), trait)
                     for trait in all_traits_set),
                    reverse=True)
all_traits = [trait for score, trait in all_traits
              if trait_filters[table_type](trait, score)]

all_origins = sorted(groups_by_origin)
all_origin_labels = [origin_labels[origin] for origin in all_origins]

origin_heads = ' & '.join(
    f"\\nohyphens{{\\bfseries {text}}}" for text in all_origin_labels
)
type_cap = table_type[0].upper() + table_type[1:]
head = f"""\
\\rowcolor{{gray!40}}
\\bfseries {type_cap} & {origin_heads} & \\bfseries total APT count \\\\"""

print("""\
{
\\footnotesize

\\begin{longtable}{>{\\raggedright\\arraybackslash}p{1.2in} p{0.76in} p{0.76in} p{0.76in} p{0.76in} >{\centering\\arraybackslash} p{0.65in} }

\\rowcolor{white}
\\caption{\\nexttabcaption} \\label{\\nexttablabel} \\\\""")
print(head)
print("\\endfirsthead")
print(head)
print("""
\\endhead

\\rowcolor{white}
\\multicolumn{6}{r}{\\textit{Continued on next page}} \\\\
\\endfoot

\\endlastfoot""")

all_percentages = []

for trait in all_traits:
    label = trait_label_makers[table_type](trait)
    group_count = sum([len(groups_by_trait_by_origin[origin].get(trait, []))
                       for origin in all_origins])

    percentages = [trait_percent(trait, origin) for origin in all_origins]
    all_percentages.append(percentages)
    group_precents_markup = ' & '.join(
        f"{round(percent)}\\% groups" for percent in percentages
    )

    print(f"{label} & {group_precents_markup} & {group_count} \\\\")

print("\\end{longtable}")
print("}")

if table_type == "country":
    plot_map(all_traits, all_percentages)