1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
|
! Copyright 2019 Wojciech Kosior
! This is free and unencumbered software released into the public domain.
! Anyone is free to copy, modify, publish, use, compile, sell, or
! distribute this software, either in source code form or as a compiled
! binary, for any purpose, commercial or non-commercial, and by any
! means.
! In jurisdictions that recognize copyright laws, the author or authors
! of this software dedicate any and all copyright interest in the
! software to the public domain. We make this dedication for the benefit
! of the public at large and to the detriment of our heirs and
! successors. We intend this dedication to be an overt act of
! relinquishment in perpetuity of all present and future rights to this
! software under copyright law.
! THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
! EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
! MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
! IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
! OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
! ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
! OTHER DEALINGS IN THE SOFTWARE.
! For more information, please refer to <http://unlicense.org/>
MODULE functions
real(kind=8), private, parameter :: poly_coeffs(11) = &
[-11.0, 15.6, -4.6, 22.5, 8.1, 5.1, -0.3, -8.0, 0.0, -9.9, 2.2]
INTERFACE
FUNCTION analytical_integral(ibeg, iend) result(y)
real(kind=8), intent(in) :: ibeg, iend
real(kind=8) :: y
END FUNCTION analytical_integral
END INTERFACE
CONTAINS
FUNCTION my_exp(x) result(y)
real(kind=8), intent(in) :: x
real(kind=8) :: y
y = exp(x)
END FUNCTION my_exp
FUNCTION my_sin(x) result(y)
real(kind=8), intent(in) :: x
real(kind=8) :: y
y = sin(x)
END FUNCTION my_sin
FUNCTION my_poly(x) result(y)
real(kind=8), intent(in) :: x
real(kind=8) :: y
integer(kind=4) :: i
y = sum(poly_coeffs(:) * [1.0_8, (x ** [(i, i = 1, 10)])])
END FUNCTION my_poly
FUNCTION my_exp_int(ibeg, iend) result(y)
real(kind=8), intent(in) :: ibeg, iend
real(kind=8) :: y
y = exp(iend) - exp(ibeg)
END FUNCTION my_exp_int
FUNCTION my_sin_int(ibeg, iend) result(y)
real(kind=8), intent(in) :: ibeg, iend
real(kind=8) :: y
y = -cos(iend) + cos(ibeg)
END FUNCTION my_sin_int
FUNCTION my_poly_int_indefinite(x) result(y)
real(kind=8), intent(in) :: x
real(kind=8) :: y
integer(kind=4) :: i, j
y = sum(poly_coeffs(:) * (1 / real([(j, j = 1, 11)])) * &
(x ** [(i, i = 1, 11)]))
END FUNCTION my_poly_int_indefinite
FUNCTION my_poly_int(ibeg, iend) result(y)
real(kind=8), intent(in) :: ibeg, iend
real(kind=8) :: y
y = my_poly_int_indefinite(iend) - my_poly_int_indefinite(ibeg)
END FUNCTION my_poly_int
END MODULE functions
|