/* * Taken from https://github.com/swenson/sort * Revision: 05fd77bfec049ce8b7c408c4d3dd2d51ee061a15 * Removed all code unrelated to Timsort and made minor adjustments for * cross-platform compatibility. */ /* * The MIT License (MIT) * * Copyright (c) 2010-2017 Christopher Swenson. * Copyright (c) 2012 Vojtech Fried. * Copyright (c) 2012 Google Inc. All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include #include #ifdef HAVE_STDINT_H #include #elif defined(_WIN32) typedef unsigned __int64 uint64_t; #endif #ifndef SORT_NAME #error "Must declare SORT_NAME" #endif #ifndef SORT_TYPE #error "Must declare SORT_TYPE" #endif #ifndef SORT_CMP #define SORT_CMP(x, y) ((x) < (y) ? -1 : ((x) == (y) ? 0 : 1)) #endif #ifndef TIM_SORT_STACK_SIZE #define TIM_SORT_STACK_SIZE 128 #endif #define SORT_SWAP(x,y) {SORT_TYPE __SORT_SWAP_t = (x); (x) = (y); (y) = __SORT_SWAP_t;} /* Common, type-agnostic functions and constants that we don't want to declare twice. */ #ifndef SORT_COMMON_H #define SORT_COMMON_H #ifndef MAX #define MAX(x,y) (((x) > (y) ? (x) : (y))) #endif #ifndef MIN #define MIN(x,y) (((x) < (y) ? (x) : (y))) #endif static int compute_minrun(const uint64_t); #ifndef CLZ #if defined(__GNUC__) && ((__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || (__GNUC__ > 3)) #define CLZ __builtin_clzll #else static int clzll(uint64_t); /* adapted from Hacker's Delight */ static int clzll(uint64_t x) { int n; if (x == 0) { return 64; } n = 0; if (x <= 0x00000000FFFFFFFFL) { n = n + 32; x = x << 32; } if (x <= 0x0000FFFFFFFFFFFFL) { n = n + 16; x = x << 16; } if (x <= 0x00FFFFFFFFFFFFFFL) { n = n + 8; x = x << 8; } if (x <= 0x0FFFFFFFFFFFFFFFL) { n = n + 4; x = x << 4; } if (x <= 0x3FFFFFFFFFFFFFFFL) { n = n + 2; x = x << 2; } if (x <= 0x7FFFFFFFFFFFFFFFL) { n = n + 1; } return n; } #define CLZ clzll #endif #endif static __inline int compute_minrun(const uint64_t size) { const int top_bit = 64 - CLZ(size); const int shift = MAX(top_bit, 6) - 6; const int minrun = size >> shift; const uint64_t mask = (1ULL << shift) - 1; if (mask & size) { return minrun + 1; } return minrun; } #endif /* SORT_COMMON_H */ #define SORT_CONCAT(x, y) x ## _ ## y #define SORT_MAKE_STR1(x, y) SORT_CONCAT(x,y) #define SORT_MAKE_STR(x) SORT_MAKE_STR1(SORT_NAME,x) #define BINARY_INSERTION_FIND SORT_MAKE_STR(binary_insertion_find) #define BINARY_INSERTION_SORT_START SORT_MAKE_STR(binary_insertion_sort_start) #define BINARY_INSERTION_SORT SORT_MAKE_STR(binary_insertion_sort) #define REVERSE_ELEMENTS SORT_MAKE_STR(reverse_elements) #define COUNT_RUN SORT_MAKE_STR(count_run) #define CHECK_INVARIANT SORT_MAKE_STR(check_invariant) #define TIM_SORT SORT_MAKE_STR(tim_sort) #define TIM_SORT_RESIZE SORT_MAKE_STR(tim_sort_resize) #define TIM_SORT_MERGE SORT_MAKE_STR(tim_sort_merge) #define TIM_SORT_COLLAPSE SORT_MAKE_STR(tim_sort_collapse) #ifndef MAX #define MAX(x,y) (((x) > (y) ? (x) : (y))) #endif #ifndef MIN #define MIN(x,y) (((x) < (y) ? (x) : (y))) #endif typedef struct { size_t start; size_t length; } TIM_SORT_RUN_T; void BINARY_INSERTION_SORT(SORT_TYPE *dst, const size_t size); void TIM_SORT(SORT_TYPE *dst, const size_t size); /* Function used to do a binary search for binary insertion sort */ static __inline size_t BINARY_INSERTION_FIND(SORT_TYPE *dst, const SORT_TYPE x, const size_t size) { size_t l, c, r; SORT_TYPE cx; l = 0; r = size - 1; c = r >> 1; /* check for out of bounds at the beginning. */ if (SORT_CMP(x, dst[0]) < 0) { return 0; } else if (SORT_CMP(x, dst[r]) > 0) { return r; } cx = dst[c]; while (1) { const int val = SORT_CMP(x, cx); if (val < 0) { if (c - l <= 1) { return c; } r = c; } else { /* allow = for stability. The binary search favors the right. */ if (r - c <= 1) { return c + 1; } l = c; } c = l + ((r - l) >> 1); cx = dst[c]; } } /* Binary insertion sort, but knowing that the first "start" entries are sorted. Used in timsort. */ static void BINARY_INSERTION_SORT_START(SORT_TYPE *dst, const size_t start, const size_t size) { size_t i; for (i = start; i < size; i++) { size_t j; SORT_TYPE x; size_t location; /* If this entry is already correct, just move along */ if (SORT_CMP(dst[i - 1], dst[i]) <= 0) { continue; } /* Else we need to find the right place, shift everything over, and squeeze in */ x = dst[i]; location = BINARY_INSERTION_FIND(dst, x, i); for (j = i - 1; j >= location; j--) { dst[j + 1] = dst[j]; if (j == 0) { /* check edge case because j is unsigned */ break; } } dst[location] = x; } } /* Binary insertion sort */ void BINARY_INSERTION_SORT(SORT_TYPE *dst, const size_t size) { /* don't bother sorting an array of size <= 1 */ if (size <= 1) { return; } BINARY_INSERTION_SORT_START(dst, 1, size); } /* timsort implementation, based on timsort.txt */ static __inline void REVERSE_ELEMENTS(SORT_TYPE *dst, size_t start, size_t end) { while (1) { if (start >= end) { return; } SORT_SWAP(dst[start], dst[end]); start++; end--; } } static size_t COUNT_RUN(SORT_TYPE *dst, const size_t start, const size_t size) { size_t curr; if (size - start == 1) { return 1; } if (start >= size - 2) { if (SORT_CMP(dst[size - 2], dst[size - 1]) > 0) { SORT_SWAP(dst[size - 2], dst[size - 1]); } return 2; } curr = start + 2; if (SORT_CMP(dst[start], dst[start + 1]) <= 0) { /* increasing run */ while (1) { if (curr == size - 1) { break; } if (SORT_CMP(dst[curr - 1], dst[curr]) > 0) { break; } curr++; } return curr - start; } else { /* decreasing run */ while (1) { if (curr == size - 1) { break; } if (SORT_CMP(dst[curr - 1], dst[curr]) <= 0) { break; } curr++; } /* reverse in-place */ REVERSE_ELEMENTS(dst, start, curr - 1); return curr - start; } } static int CHECK_INVARIANT(TIM_SORT_RUN_T *stack, const int stack_curr) { size_t A, B, C; if (stack_curr < 2) { return 1; } if (stack_curr == 2) { const size_t A1 = stack[stack_curr - 2].length; const size_t B1 = stack[stack_curr - 1].length; if (A1 <= B1) { return 0; } return 1; } A = stack[stack_curr - 3].length; B = stack[stack_curr - 2].length; C = stack[stack_curr - 1].length; if ((A <= B + C) || (B <= C)) { return 0; } return 1; } typedef struct { size_t alloc; SORT_TYPE *storage; } TEMP_STORAGE_T; static void TIM_SORT_RESIZE(TEMP_STORAGE_T *store, const size_t new_size) { if (store->alloc < new_size) { SORT_TYPE *tempstore = (SORT_TYPE *)realloc(store->storage, new_size * sizeof(SORT_TYPE)); if (tempstore == NULL) { fprintf(stderr, "Error allocating temporary storage for tim sort: need %lu bytes", (unsigned long)(sizeof(SORT_TYPE) * new_size)); exit(1); } store->storage = tempstore; store->alloc = new_size; } } static void TIM_SORT_MERGE(SORT_TYPE *dst, const TIM_SORT_RUN_T *stack, const int stack_curr, TEMP_STORAGE_T *store) { const size_t A = stack[stack_curr - 2].length; const size_t B = stack[stack_curr - 1].length; const size_t curr = stack[stack_curr - 2].start; SORT_TYPE *storage; size_t i, j, k; TIM_SORT_RESIZE(store, MIN(A, B)); storage = store->storage; /* left merge */ if (A < B) { memcpy(storage, &dst[curr], A * sizeof(SORT_TYPE)); i = 0; j = curr + A; for (k = curr; k < curr + A + B; k++) { if ((i < A) && (j < curr + A + B)) { if (SORT_CMP(storage[i], dst[j]) <= 0) { dst[k] = storage[i++]; } else { dst[k] = dst[j++]; } } else if (i < A) { dst[k] = storage[i++]; } else { break; } } } else { /* right merge */ memcpy(storage, &dst[curr + A], B * sizeof(SORT_TYPE)); i = B; j = curr + A; k = curr + A + B; while (k > curr) { k--; if ((i > 0) && (j > curr)) { if (SORT_CMP(dst[j - 1], storage[i - 1]) > 0) { dst[k] = dst[--j]; } else { dst[k] = storage[--i]; } } else if (i > 0) { dst[k] = storage[--i]; } else { break; } } } } static int TIM_SORT_COLLAPSE(SORT_TYPE *dst, TIM_SORT_RUN_T *stack, int stack_curr, TEMP_STORAGE_T *store, const size_t size) { while (1) { size_t A, B, C, D; int ABC, BCD, CD; /* if the stack only has one thing on it, we are done with the collapse */ if (stack_curr <= 1) { break; } /* if this is the last merge, just do it */ if ((stack_curr == 2) && (stack[0].length + stack[1].length == size)) { TIM_SORT_MERGE(dst, stack, stack_curr, store); stack[0].length += stack[1].length; stack_curr--; break; } /* check if the invariant is off for a stack of 2 elements */ else if ((stack_curr == 2) && (stack[0].length <= stack[1].length)) { TIM_SORT_MERGE(dst, stack, stack_curr, store); stack[0].length += stack[1].length; stack_curr--; break; } else if (stack_curr == 2) { break; } B = stack[stack_curr - 3].length; C = stack[stack_curr - 2].length; D = stack[stack_curr - 1].length; if (stack_curr >= 4) { A = stack[stack_curr - 4].length; ABC = (A <= B + C); } else { ABC = 0; } BCD = (B <= C + D) || ABC; CD = (C <= D); /* Both invariants are good */ if (!BCD && !CD) { break; } /* left merge */ if (BCD && !CD) { TIM_SORT_MERGE(dst, stack, stack_curr - 1, store); stack[stack_curr - 3].length += stack[stack_curr - 2].length; stack[stack_curr - 2] = stack[stack_curr - 1]; stack_curr--; } else { /* right merge */ TIM_SORT_MERGE(dst, stack, stack_curr, store); stack[stack_curr - 2].length += stack[stack_curr - 1].length; stack_curr--; } } return stack_curr; } static __inline int PUSH_NEXT(SORT_TYPE *dst, const size_t size, TEMP_STORAGE_T *store, const size_t minrun, TIM_SORT_RUN_T *run_stack, size_t *stack_curr, size_t *curr) { size_t len = COUNT_RUN(dst, *curr, size); size_t run = minrun; if (run > size - *curr) { run = size - *curr; } if (run > len) { BINARY_INSERTION_SORT_START(&dst[*curr], len, run); len = run; } run_stack[*stack_curr].start = *curr; run_stack[*stack_curr].length = len; (*stack_curr)++; *curr += len; if (*curr == size) { /* finish up */ while (*stack_curr > 1) { TIM_SORT_MERGE(dst, run_stack, *stack_curr, store); run_stack[*stack_curr - 2].length += run_stack[*stack_curr - 1].length; (*stack_curr)--; } if (store->storage != NULL) { free(store->storage); store->storage = NULL; } return 0; } return 1; } void TIM_SORT(SORT_TYPE *dst, const size_t size) { size_t minrun; TEMP_STORAGE_T _store, *store; TIM_SORT_RUN_T run_stack[TIM_SORT_STACK_SIZE]; size_t stack_curr = 0; size_t curr = 0; /* don't bother sorting an array of size 1 */ if (size <= 1) { return; } if (size < 64) { BINARY_INSERTION_SORT(dst, size); return; } /* compute the minimum run length */ minrun = compute_minrun(size); /* temporary storage for merges */ store = &_store; store->alloc = 0; store->storage = NULL; if (!PUSH_NEXT(dst, size, store, minrun, run_stack, &stack_curr, &curr)) { return; } if (!PUSH_NEXT(dst, size, store, minrun, run_stack, &stack_curr, &curr)) { return; } if (!PUSH_NEXT(dst, size, store, minrun, run_stack, &stack_curr, &curr)) { return; } while (1) { if (!CHECK_INVARIANT(run_stack, stack_curr)) { stack_curr = TIM_SORT_COLLAPSE(dst, run_stack, stack_curr, store, size); continue; } if (!PUSH_NEXT(dst, size, store, minrun, run_stack, &stack_curr, &curr)) { return; } } } #undef SORT_CONCAT #undef SORT_MAKE_STR1 #undef SORT_MAKE_STR #undef SORT_NAME #undef SORT_TYPE #undef SORT_CMP #undef TEMP_STORAGE_T #undef TIM_SORT_RUN_T #undef PUSH_NEXT #undef SORT_SWAP #undef SORT_CONCAT #undef SORT_MAKE_STR1 #undef SORT_MAKE_STR #undef BINARY_INSERTION_FIND #undef BINARY_INSERTION_SORT_START #undef BINARY_INSERTION_SORT #undef REVERSE_ELEMENTS #undef COUNT_RUN #undef TIM_SORT #undef TIM_SORT_RESIZE #undef TIM_SORT_COLLAPSE #undef TIM_SORT_RUN_T #undef TEMP_STORAGE_T