From 35a201cc8ef0c3f5b2df88d2e528aabee1048348 Mon Sep 17 00:00:00 2001 From: Wojtek Kosior Date: Fri, 30 Apr 2021 18:47:09 +0200 Subject: Initial/Final commit --- libxml2-2.9.10/trionan.c | 914 +++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 914 insertions(+) create mode 100644 libxml2-2.9.10/trionan.c (limited to 'libxml2-2.9.10/trionan.c') diff --git a/libxml2-2.9.10/trionan.c b/libxml2-2.9.10/trionan.c new file mode 100644 index 0000000..530b1c0 --- /dev/null +++ b/libxml2-2.9.10/trionan.c @@ -0,0 +1,914 @@ +/************************************************************************* + * + * $Id$ + * + * Copyright (C) 2001 Bjorn Reese + * + * Permission to use, copy, modify, and distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED + * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF + * MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE AUTHORS AND + * CONTRIBUTORS ACCEPT NO RESPONSIBILITY IN ANY CONCEIVABLE MANNER. + * + ************************************************************************ + * + * Functions to handle special quantities in floating-point numbers + * (that is, NaNs and infinity). They provide the capability to detect + * and fabricate special quantities. + * + * Although written to be as portable as possible, it can never be + * guaranteed to work on all platforms, as not all hardware supports + * special quantities. + * + * The approach used here (approximately) is to: + * + * 1. Use C99 functionality when available. + * 2. Use IEEE 754 bit-patterns if possible. + * 3. Use platform-specific techniques. + * + ************************************************************************/ + +/* + * TODO: + * o Put all the magic into trio_fpclassify_and_signbit(), and use this from + * trio_isnan() etc. + */ + +/************************************************************************* + * Include files + */ +#include "triodef.h" +#include "trionan.h" + +#include +#include +#include +#include +#if defined(TRIO_PLATFORM_UNIX) +# include +#endif +#if defined(TRIO_COMPILER_DECC) +# if defined(__linux__) +# include +# else +# include +# endif +#endif +#include + +#if defined(TRIO_DOCUMENTATION) +# include "doc/doc_nan.h" +#endif +/** @addtogroup SpecialQuantities + @{ +*/ + +/************************************************************************* + * Definitions + */ + +#define TRIO_TRUE (1 == 1) +#define TRIO_FALSE (0 == 1) + +/* + * We must enable IEEE floating-point on Alpha + */ +#if defined(__alpha) && !defined(_IEEE_FP) +# if defined(TRIO_COMPILER_DECC) +# if defined(TRIO_PLATFORM_VMS) +# error "Must be compiled with option /IEEE_MODE=UNDERFLOW_TO_ZERO/FLOAT=IEEE" +# else +# if !defined(_CFE) +# error "Must be compiled with option -ieee" +# endif +# endif +# elif defined(TRIO_COMPILER_GCC) && (defined(__osf__) || defined(__linux__)) +# error "Must be compiled with option -mieee" +# endif +#endif /* __alpha && ! _IEEE_FP */ + +/* + * In ANSI/IEEE 754-1985 64-bits double format numbers have the + * following properties (amongst others) + * + * o FLT_RADIX == 2: binary encoding + * o DBL_MAX_EXP == 1024: 11 bits exponent, where one bit is used + * to indicate special numbers (e.g. NaN and Infinity), so the + * maximum exponent is 10 bits wide (2^10 == 1024). + * o DBL_MANT_DIG == 53: The mantissa is 52 bits wide, but because + * numbers are normalized the initial binary 1 is represented + * implicitly (the so-called "hidden bit"), which leaves us with + * the ability to represent 53 bits wide mantissa. + */ +#if (FLT_RADIX == 2) && (DBL_MAX_EXP == 1024) && (DBL_MANT_DIG == 53) +# define USE_IEEE_754 +#endif + + +/************************************************************************* + * Constants + */ + +static TRIO_CONST char rcsid[] = "@(#)$Id$"; + +#if defined(USE_IEEE_754) + +/* + * Endian-agnostic indexing macro. + * + * The value of internalEndianMagic, when converted into a 64-bit + * integer, becomes 0x0706050403020100 (we could have used a 64-bit + * integer value instead of a double, but not all platforms supports + * that type). The value is automatically encoded with the correct + * endianess by the compiler, which means that we can support any + * kind of endianess. The individual bytes are then used as an index + * for the IEEE 754 bit-patterns and masks. + */ +#define TRIO_DOUBLE_INDEX(x) (((unsigned char *)&internalEndianMagic)[7-(x)]) + +#if (defined(__BORLANDC__) && __BORLANDC__ >= 0x0590) +static TRIO_CONST double internalEndianMagic = 7.949928895127362e-275; +#else +static TRIO_CONST double internalEndianMagic = 7.949928895127363e-275; +#endif + +/* Mask for the exponent */ +static TRIO_CONST unsigned char ieee_754_exponent_mask[] = { + 0x7F, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 +}; + +/* Mask for the mantissa */ +static TRIO_CONST unsigned char ieee_754_mantissa_mask[] = { + 0x00, 0x0F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF +}; + +/* Mask for the sign bit */ +static TRIO_CONST unsigned char ieee_754_sign_mask[] = { + 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 +}; + +/* Bit-pattern for negative zero */ +static TRIO_CONST unsigned char ieee_754_negzero_array[] = { + 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 +}; + +/* Bit-pattern for infinity */ +static TRIO_CONST unsigned char ieee_754_infinity_array[] = { + 0x7F, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 +}; + +/* Bit-pattern for quiet NaN */ +static TRIO_CONST unsigned char ieee_754_qnan_array[] = { + 0x7F, 0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 +}; + + +/************************************************************************* + * Functions + */ + +/* + * trio_make_double + */ +TRIO_PRIVATE double +trio_make_double +TRIO_ARGS1((values), + TRIO_CONST unsigned char *values) +{ + TRIO_VOLATILE double result; + int i; + + for (i = 0; i < (int)sizeof(double); i++) { + ((TRIO_VOLATILE unsigned char *)&result)[TRIO_DOUBLE_INDEX(i)] = values[i]; + } + return result; +} + +/* + * trio_is_special_quantity + */ +TRIO_PRIVATE int +trio_is_special_quantity +TRIO_ARGS2((number, has_mantissa), + double number, + int *has_mantissa) +{ + unsigned int i; + unsigned char current; + int is_special_quantity = TRIO_TRUE; + + *has_mantissa = 0; + + for (i = 0; i < (unsigned int)sizeof(double); i++) { + current = ((unsigned char *)&number)[TRIO_DOUBLE_INDEX(i)]; + is_special_quantity + &= ((current & ieee_754_exponent_mask[i]) == ieee_754_exponent_mask[i]); + *has_mantissa |= (current & ieee_754_mantissa_mask[i]); + } + return is_special_quantity; +} + +/* + * trio_is_negative + */ +TRIO_PRIVATE int +trio_is_negative +TRIO_ARGS1((number), + double number) +{ + unsigned int i; + int is_negative = TRIO_FALSE; + + for (i = 0; i < (unsigned int)sizeof(double); i++) { + is_negative |= (((unsigned char *)&number)[TRIO_DOUBLE_INDEX(i)] + & ieee_754_sign_mask[i]); + } + return is_negative; +} + +#endif /* USE_IEEE_754 */ + + +/** + Generate negative zero. + + @return Floating-point representation of negative zero. +*/ +TRIO_PUBLIC double +trio_nzero(TRIO_NOARGS) +{ +#if defined(USE_IEEE_754) + return trio_make_double(ieee_754_negzero_array); +#else + TRIO_VOLATILE double zero = 0.0; + + return -zero; +#endif +} + +/** + Generate positive infinity. + + @return Floating-point representation of positive infinity. +*/ +TRIO_PUBLIC double +trio_pinf(TRIO_NOARGS) +{ + /* Cache the result */ + static double result = 0.0; + + if (result == 0.0) { + +#if defined(INFINITY) && defined(__STDC_IEC_559__) + result = (double)INFINITY; + +#elif defined(USE_IEEE_754) + result = trio_make_double(ieee_754_infinity_array); + +#else + /* + * If HUGE_VAL is different from DBL_MAX, then HUGE_VAL is used + * as infinity. Otherwise we have to resort to an overflow + * operation to generate infinity. + */ +# if defined(TRIO_PLATFORM_UNIX) + void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN); +# endif + + result = HUGE_VAL; + if (HUGE_VAL == DBL_MAX) { + /* Force overflow */ + result += HUGE_VAL; + } + +# if defined(TRIO_PLATFORM_UNIX) + signal(SIGFPE, signal_handler); +# endif + +#endif + } + return result; +} + +/** + Generate negative infinity. + + @return Floating-point value of negative infinity. +*/ +TRIO_PUBLIC double +trio_ninf(TRIO_NOARGS) +{ + static double result = 0.0; + + if (result == 0.0) { + /* + * Negative infinity is calculated by negating positive infinity, + * which can be done because it is legal to do calculations on + * infinity (for example, 1 / infinity == 0). + */ + result = -trio_pinf(); + } + return result; +} + +/** + Generate NaN. + + @return Floating-point representation of NaN. +*/ +TRIO_PUBLIC double +trio_nan(TRIO_NOARGS) +{ + /* Cache the result */ + static double result = 0.0; + + if (result == 0.0) { + +#if defined(TRIO_COMPILER_SUPPORTS_C99) + result = nan(""); + +#elif defined(NAN) && defined(__STDC_IEC_559__) + result = (double)NAN; + +#elif defined(USE_IEEE_754) + result = trio_make_double(ieee_754_qnan_array); + +#else + /* + * There are several ways to generate NaN. The one used here is + * to divide infinity by infinity. I would have preferred to add + * negative infinity to positive infinity, but that yields wrong + * result (infinity) on FreeBSD. + * + * This may fail if the hardware does not support NaN, or if + * the Invalid Operation floating-point exception is unmasked. + */ +# if defined(TRIO_PLATFORM_UNIX) + void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN); +# endif + + result = trio_pinf() / trio_pinf(); + +# if defined(TRIO_PLATFORM_UNIX) + signal(SIGFPE, signal_handler); +# endif + +#endif + } + return result; +} + +/** + Check for NaN. + + @param number An arbitrary floating-point number. + @return Boolean value indicating whether or not the number is a NaN. +*/ +TRIO_PUBLIC int +trio_isnan +TRIO_ARGS1((number), + double number) +{ +#if (defined(TRIO_COMPILER_SUPPORTS_C99) && defined(isnan)) \ + || defined(TRIO_COMPILER_SUPPORTS_UNIX95) + /* + * C99 defines isnan() as a macro. UNIX95 defines isnan() as a + * function. This function was already present in XPG4, but this + * is a bit tricky to detect with compiler defines, so we choose + * the conservative approach and only use it for UNIX95. + */ + return isnan(number); + +#elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB) + /* + * Microsoft Visual C++ and Borland C++ Builder have an _isnan() + * function. + */ + return _isnan(number) ? TRIO_TRUE : TRIO_FALSE; + +#elif defined(USE_IEEE_754) + /* + * Examine IEEE 754 bit-pattern. A NaN must have a special exponent + * pattern, and a non-empty mantissa. + */ + int has_mantissa; + int is_special_quantity; + + is_special_quantity = trio_is_special_quantity(number, &has_mantissa); + + return (is_special_quantity && has_mantissa); + +#else + /* + * Fallback solution + */ + int status; + double integral, fraction; + +# if defined(TRIO_PLATFORM_UNIX) + void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN); +# endif + + status = (/* + * NaN is the only number which does not compare to itself + */ + ((TRIO_VOLATILE double)number != (TRIO_VOLATILE double)number) || + /* + * Fallback solution if NaN compares to NaN + */ + ((number != 0.0) && + (fraction = modf(number, &integral), + integral == fraction))); + +# if defined(TRIO_PLATFORM_UNIX) + signal(SIGFPE, signal_handler); +# endif + + return status; + +#endif +} + +/** + Check for infinity. + + @param number An arbitrary floating-point number. + @return 1 if positive infinity, -1 if negative infinity, 0 otherwise. +*/ +TRIO_PUBLIC int +trio_isinf +TRIO_ARGS1((number), + double number) +{ +#if defined(TRIO_COMPILER_DECC) && !defined(__linux__) + /* + * DECC has an isinf() macro, but it works differently than that + * of C99, so we use the fp_class() function instead. + */ + return ((fp_class(number) == FP_POS_INF) + ? 1 + : ((fp_class(number) == FP_NEG_INF) ? -1 : 0)); + +#elif defined(isinf) + /* + * C99 defines isinf() as a macro. + */ + return isinf(number) + ? ((number > 0.0) ? 1 : -1) + : 0; + +#elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB) + /* + * Microsoft Visual C++ and Borland C++ Builder have an _fpclass() + * function that can be used to detect infinity. + */ + return ((_fpclass(number) == _FPCLASS_PINF) + ? 1 + : ((_fpclass(number) == _FPCLASS_NINF) ? -1 : 0)); + +#elif defined(USE_IEEE_754) + /* + * Examine IEEE 754 bit-pattern. Infinity must have a special exponent + * pattern, and an empty mantissa. + */ + int has_mantissa; + int is_special_quantity; + + is_special_quantity = trio_is_special_quantity(number, &has_mantissa); + + return (is_special_quantity && !has_mantissa) + ? ((number < 0.0) ? -1 : 1) + : 0; + +#else + /* + * Fallback solution. + */ + int status; + +# if defined(TRIO_PLATFORM_UNIX) + void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN); +# endif + + double infinity = trio_pinf(); + + status = ((number == infinity) + ? 1 + : ((number == -infinity) ? -1 : 0)); + +# if defined(TRIO_PLATFORM_UNIX) + signal(SIGFPE, signal_handler); +# endif + + return status; + +#endif +} + +#if 0 + /* Temporary fix - this routine is not used anywhere */ +/** + Check for finity. + + @param number An arbitrary floating-point number. + @return Boolean value indicating whether or not the number is a finite. +*/ +TRIO_PUBLIC int +trio_isfinite +TRIO_ARGS1((number), + double number) +{ +#if defined(TRIO_COMPILER_SUPPORTS_C99) && defined(isfinite) + /* + * C99 defines isfinite() as a macro. + */ + return isfinite(number); + +#elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB) + /* + * Microsoft Visual C++ and Borland C++ Builder use _finite(). + */ + return _finite(number); + +#elif defined(USE_IEEE_754) + /* + * Examine IEEE 754 bit-pattern. For finity we do not care about the + * mantissa. + */ + int dummy; + + return (! trio_is_special_quantity(number, &dummy)); + +#else + /* + * Fallback solution. + */ + return ((trio_isinf(number) == 0) && (trio_isnan(number) == 0)); + +#endif +} + +#endif + +/* + * The sign of NaN is always false + */ +TRIO_PUBLIC int +trio_fpclassify_and_signbit +TRIO_ARGS2((number, is_negative), + double number, + int *is_negative) +{ +#if defined(fpclassify) && defined(signbit) + /* + * C99 defines fpclassify() and signbit() as a macros + */ + *is_negative = signbit(number); + switch (fpclassify(number)) { + case FP_NAN: + return TRIO_FP_NAN; + case FP_INFINITE: + return TRIO_FP_INFINITE; + case FP_SUBNORMAL: + return TRIO_FP_SUBNORMAL; + case FP_ZERO: + return TRIO_FP_ZERO; + default: + return TRIO_FP_NORMAL; + } + +#else +# if defined(TRIO_COMPILER_DECC) + /* + * DECC has an fp_class() function. + */ +# define TRIO_FPCLASSIFY(n) fp_class(n) +# define TRIO_QUIET_NAN FP_QNAN +# define TRIO_SIGNALLING_NAN FP_SNAN +# define TRIO_POSITIVE_INFINITY FP_POS_INF +# define TRIO_NEGATIVE_INFINITY FP_NEG_INF +# define TRIO_POSITIVE_SUBNORMAL FP_POS_DENORM +# define TRIO_NEGATIVE_SUBNORMAL FP_NEG_DENORM +# define TRIO_POSITIVE_ZERO FP_POS_ZERO +# define TRIO_NEGATIVE_ZERO FP_NEG_ZERO +# define TRIO_POSITIVE_NORMAL FP_POS_NORM +# define TRIO_NEGATIVE_NORMAL FP_NEG_NORM + +# elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB) + /* + * Microsoft Visual C++ and Borland C++ Builder have an _fpclass() + * function. + */ +# define TRIO_FPCLASSIFY(n) _fpclass(n) +# define TRIO_QUIET_NAN _FPCLASS_QNAN +# define TRIO_SIGNALLING_NAN _FPCLASS_SNAN +# define TRIO_POSITIVE_INFINITY _FPCLASS_PINF +# define TRIO_NEGATIVE_INFINITY _FPCLASS_NINF +# define TRIO_POSITIVE_SUBNORMAL _FPCLASS_PD +# define TRIO_NEGATIVE_SUBNORMAL _FPCLASS_ND +# define TRIO_POSITIVE_ZERO _FPCLASS_PZ +# define TRIO_NEGATIVE_ZERO _FPCLASS_NZ +# define TRIO_POSITIVE_NORMAL _FPCLASS_PN +# define TRIO_NEGATIVE_NORMAL _FPCLASS_NN + +# elif defined(FP_PLUS_NORM) + /* + * HP-UX 9.x and 10.x have an fpclassify() function, that is different + * from the C99 fpclassify() macro supported on HP-UX 11.x. + * + * AIX has class() for C, and _class() for C++, which returns the + * same values as the HP-UX fpclassify() function. + */ +# if defined(TRIO_PLATFORM_AIX) +# if defined(__cplusplus) +# define TRIO_FPCLASSIFY(n) _class(n) +# else +# define TRIO_FPCLASSIFY(n) class(n) +# endif +# else +# define TRIO_FPCLASSIFY(n) fpclassify(n) +# endif +# define TRIO_QUIET_NAN FP_QNAN +# define TRIO_SIGNALLING_NAN FP_SNAN +# define TRIO_POSITIVE_INFINITY FP_PLUS_INF +# define TRIO_NEGATIVE_INFINITY FP_MINUS_INF +# define TRIO_POSITIVE_SUBNORMAL FP_PLUS_DENORM +# define TRIO_NEGATIVE_SUBNORMAL FP_MINUS_DENORM +# define TRIO_POSITIVE_ZERO FP_PLUS_ZERO +# define TRIO_NEGATIVE_ZERO FP_MINUS_ZERO +# define TRIO_POSITIVE_NORMAL FP_PLUS_NORM +# define TRIO_NEGATIVE_NORMAL FP_MINUS_NORM +# endif + +# if defined(TRIO_FPCLASSIFY) + switch (TRIO_FPCLASSIFY(number)) { + case TRIO_QUIET_NAN: + case TRIO_SIGNALLING_NAN: + *is_negative = TRIO_FALSE; /* NaN has no sign */ + return TRIO_FP_NAN; + case TRIO_POSITIVE_INFINITY: + *is_negative = TRIO_FALSE; + return TRIO_FP_INFINITE; + case TRIO_NEGATIVE_INFINITY: + *is_negative = TRIO_TRUE; + return TRIO_FP_INFINITE; + case TRIO_POSITIVE_SUBNORMAL: + *is_negative = TRIO_FALSE; + return TRIO_FP_SUBNORMAL; + case TRIO_NEGATIVE_SUBNORMAL: + *is_negative = TRIO_TRUE; + return TRIO_FP_SUBNORMAL; + case TRIO_POSITIVE_ZERO: + *is_negative = TRIO_FALSE; + return TRIO_FP_ZERO; + case TRIO_NEGATIVE_ZERO: + *is_negative = TRIO_TRUE; + return TRIO_FP_ZERO; + case TRIO_POSITIVE_NORMAL: + *is_negative = TRIO_FALSE; + return TRIO_FP_NORMAL; + case TRIO_NEGATIVE_NORMAL: + *is_negative = TRIO_TRUE; + return TRIO_FP_NORMAL; + default: + /* Just in case... */ + *is_negative = (number < 0.0); + return TRIO_FP_NORMAL; + } + +# else + /* + * Fallback solution. + */ + int rc; + + if (number == 0.0) { + /* + * In IEEE 754 the sign of zero is ignored in comparisons, so we + * have to handle this as a special case by examining the sign bit + * directly. + */ +# if defined(USE_IEEE_754) + *is_negative = trio_is_negative(number); +# else + *is_negative = TRIO_FALSE; /* FIXME */ +# endif + return TRIO_FP_ZERO; + } + if (trio_isnan(number)) { + *is_negative = TRIO_FALSE; + return TRIO_FP_NAN; + } + if ((rc = trio_isinf(number))) { + *is_negative = (rc == -1); + return TRIO_FP_INFINITE; + } + if ((number > 0.0) && (number < DBL_MIN)) { + *is_negative = TRIO_FALSE; + return TRIO_FP_SUBNORMAL; + } + if ((number < 0.0) && (number > -DBL_MIN)) { + *is_negative = TRIO_TRUE; + return TRIO_FP_SUBNORMAL; + } + *is_negative = (number < 0.0); + return TRIO_FP_NORMAL; + +# endif +#endif +} + +/** + Examine the sign of a number. + + @param number An arbitrary floating-point number. + @return Boolean value indicating whether or not the number has the + sign bit set (i.e. is negative). +*/ +TRIO_PUBLIC int +trio_signbit +TRIO_ARGS1((number), + double number) +{ + int is_negative; + + (void)trio_fpclassify_and_signbit(number, &is_negative); + return is_negative; +} + +#if 0 + /* Temporary fix - this routine is not used in libxml */ +/** + Examine the class of a number. + + @param number An arbitrary floating-point number. + @return Enumerable value indicating the class of @p number +*/ +TRIO_PUBLIC int +trio_fpclassify +TRIO_ARGS1((number), + double number) +{ + int dummy; + + return trio_fpclassify_and_signbit(number, &dummy); +} + +#endif + +/** @} SpecialQuantities */ + +/************************************************************************* + * For test purposes. + * + * Add the following compiler option to include this test code. + * + * Unix : -DSTANDALONE + * VMS : /DEFINE=(STANDALONE) + */ +#if defined(STANDALONE) +# include + +static TRIO_CONST char * +getClassification +TRIO_ARGS1((type), + int type) +{ + switch (type) { + case TRIO_FP_INFINITE: + return "FP_INFINITE"; + case TRIO_FP_NAN: + return "FP_NAN"; + case TRIO_FP_NORMAL: + return "FP_NORMAL"; + case TRIO_FP_SUBNORMAL: + return "FP_SUBNORMAL"; + case TRIO_FP_ZERO: + return "FP_ZERO"; + default: + return "FP_UNKNOWN"; + } +} + +static void +print_class +TRIO_ARGS2((prefix, number), + TRIO_CONST char *prefix, + double number) +{ + printf("%-6s: %s %-15s %g\n", + prefix, + trio_signbit(number) ? "-" : "+", + getClassification(TRIO_FPCLASSIFY(number)), + number); +} + +int main(TRIO_NOARGS) +{ + double my_nan; + double my_pinf; + double my_ninf; +# if defined(TRIO_PLATFORM_UNIX) + void (*signal_handler) TRIO_PROTO((int)); +# endif + + my_nan = trio_nan(); + my_pinf = trio_pinf(); + my_ninf = trio_ninf(); + + print_class("Nan", my_nan); + print_class("PInf", my_pinf); + print_class("NInf", my_ninf); + print_class("PZero", 0.0); + print_class("NZero", -0.0); + print_class("PNorm", 1.0); + print_class("NNorm", -1.0); + print_class("PSub", 1.01e-307 - 1.00e-307); + print_class("NSub", 1.00e-307 - 1.01e-307); + + printf("NaN : %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n", + my_nan, + ((unsigned char *)&my_nan)[0], + ((unsigned char *)&my_nan)[1], + ((unsigned char *)&my_nan)[2], + ((unsigned char *)&my_nan)[3], + ((unsigned char *)&my_nan)[4], + ((unsigned char *)&my_nan)[5], + ((unsigned char *)&my_nan)[6], + ((unsigned char *)&my_nan)[7], + trio_isnan(my_nan), trio_isinf(my_nan)); + printf("PInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n", + my_pinf, + ((unsigned char *)&my_pinf)[0], + ((unsigned char *)&my_pinf)[1], + ((unsigned char *)&my_pinf)[2], + ((unsigned char *)&my_pinf)[3], + ((unsigned char *)&my_pinf)[4], + ((unsigned char *)&my_pinf)[5], + ((unsigned char *)&my_pinf)[6], + ((unsigned char *)&my_pinf)[7], + trio_isnan(my_pinf), trio_isinf(my_pinf)); + printf("NInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n", + my_ninf, + ((unsigned char *)&my_ninf)[0], + ((unsigned char *)&my_ninf)[1], + ((unsigned char *)&my_ninf)[2], + ((unsigned char *)&my_ninf)[3], + ((unsigned char *)&my_ninf)[4], + ((unsigned char *)&my_ninf)[5], + ((unsigned char *)&my_ninf)[6], + ((unsigned char *)&my_ninf)[7], + trio_isnan(my_ninf), trio_isinf(my_ninf)); + +# if defined(TRIO_PLATFORM_UNIX) + signal_handler = signal(SIGFPE, SIG_IGN); +# endif + + my_pinf = DBL_MAX + DBL_MAX; + my_ninf = -my_pinf; + my_nan = my_pinf / my_pinf; + +# if defined(TRIO_PLATFORM_UNIX) + signal(SIGFPE, signal_handler); +# endif + + printf("NaN : %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n", + my_nan, + ((unsigned char *)&my_nan)[0], + ((unsigned char *)&my_nan)[1], + ((unsigned char *)&my_nan)[2], + ((unsigned char *)&my_nan)[3], + ((unsigned char *)&my_nan)[4], + ((unsigned char *)&my_nan)[5], + ((unsigned char *)&my_nan)[6], + ((unsigned char *)&my_nan)[7], + trio_isnan(my_nan), trio_isinf(my_nan)); + printf("PInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n", + my_pinf, + ((unsigned char *)&my_pinf)[0], + ((unsigned char *)&my_pinf)[1], + ((unsigned char *)&my_pinf)[2], + ((unsigned char *)&my_pinf)[3], + ((unsigned char *)&my_pinf)[4], + ((unsigned char *)&my_pinf)[5], + ((unsigned char *)&my_pinf)[6], + ((unsigned char *)&my_pinf)[7], + trio_isnan(my_pinf), trio_isinf(my_pinf)); + printf("NInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n", + my_ninf, + ((unsigned char *)&my_ninf)[0], + ((unsigned char *)&my_ninf)[1], + ((unsigned char *)&my_ninf)[2], + ((unsigned char *)&my_ninf)[3], + ((unsigned char *)&my_ninf)[4], + ((unsigned char *)&my_ninf)[5], + ((unsigned char *)&my_ninf)[6], + ((unsigned char *)&my_ninf)[7], + trio_isnan(my_ninf), trio_isinf(my_ninf)); + + return 0; +} +#endif -- cgit v1.2.3