#! /usr/bin/env perl # Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # ECP_NISTZ256 module for SPARCv9. # # February 2015. # # Original ECP_NISTZ256 submission targeting x86_64 is detailed in # http://eprint.iacr.org/2013/816. In the process of adaptation # original .c module was made 32-bit savvy in order to make this # implementation possible. # # with/without -DECP_NISTZ256_ASM # UltraSPARC III +12-18% # SPARC T4 +99-550% (+66-150% on 32-bit Solaris) # # Ranges denote minimum and maximum improvement coefficients depending # on benchmark. Lower coefficients are for ECDSA sign, server-side # operation. Keep in mind that +200% means 3x improvement. $output = pop; open STDOUT,">$output"; $code.=<<___; #include "sparc_arch.h" #define LOCALS (STACK_BIAS+STACK_FRAME) #ifdef __arch64__ .register %g2,#scratch .register %g3,#scratch # define STACK64_FRAME STACK_FRAME # define LOCALS64 LOCALS #else # define STACK64_FRAME (2047+192) # define LOCALS64 STACK64_FRAME #endif .section ".text",#alloc,#execinstr ___ ######################################################################## # Convert ecp_nistz256_table.c to layout expected by ecp_nistz_gather_w7 # $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; open TABLE,") { s/TOBN\(\s*(0x[0-9a-f]+),\s*(0x[0-9a-f]+)\s*\)/push @arr,hex($2),hex($1)/geo; } close TABLE; # See ecp_nistz256_table.c for explanation for why it's 64*16*37. # 64*16*37-1 is because $#arr returns last valid index or @arr, not # amount of elements. die "insane number of elements" if ($#arr != 64*16*37-1); $code.=<<___; .globl ecp_nistz256_precomputed .align 4096 ecp_nistz256_precomputed: ___ ######################################################################## # this conversion smashes P256_POINT_AFFINE by individual bytes with # 64 byte interval, similar to # 1111222233334444 # 1234123412341234 for(1..37) { @tbl = splice(@arr,0,64*16); for($i=0;$i<64;$i++) { undef @line; for($j=0;$j<64;$j++) { push @line,(@tbl[$j*16+$i/4]>>(($i%4)*8))&0xff; } $code.=".byte\t"; $code.=join(',',map { sprintf "0x%02x",$_} @line); $code.="\n"; } } {{{ my ($rp,$ap,$bp)=map("%i$_",(0..2)); my @acc=map("%l$_",(0..7)); my ($t0,$t1,$t2,$t3,$t4,$t5,$t6,$t7)=(map("%o$_",(0..5)),"%g4","%g5"); my ($bi,$a0,$mask,$carry)=(map("%i$_",(3..5)),"%g1"); my ($rp_real,$ap_real)=("%g2","%g3"); $code.=<<___; .type ecp_nistz256_precomputed,#object .size ecp_nistz256_precomputed,.-ecp_nistz256_precomputed .align 64 .LRR: ! 2^512 mod P precomputed for NIST P256 polynomial .long 0x00000003, 0x00000000, 0xffffffff, 0xfffffffb .long 0xfffffffe, 0xffffffff, 0xfffffffd, 0x00000004 .Lone: .long 1,0,0,0,0,0,0,0 .asciz "ECP_NISTZ256 for SPARCv9, CRYPTOGAMS by " ! void ecp_nistz256_to_mont(BN_ULONG %i0[8],const BN_ULONG %i1[8]); .globl ecp_nistz256_to_mont .align 64 ecp_nistz256_to_mont: save %sp,-STACK_FRAME,%sp nop 1: call .+8 add %o7,.LRR-1b,$bp call __ecp_nistz256_mul_mont nop ret restore .type ecp_nistz256_to_mont,#function .size ecp_nistz256_to_mont,.-ecp_nistz256_to_mont ! void ecp_nistz256_from_mont(BN_ULONG %i0[8],const BN_ULONG %i1[8]); .globl ecp_nistz256_from_mont .align 32 ecp_nistz256_from_mont: save %sp,-STACK_FRAME,%sp nop 1: call .+8 add %o7,.Lone-1b,$bp call __ecp_nistz256_mul_mont nop ret restore .type ecp_nistz256_from_mont,#function .size ecp_nistz256_from_mont,.-ecp_nistz256_from_mont ! void ecp_nistz256_mul_mont(BN_ULONG %i0[8],const BN_ULONG %i1[8], ! const BN_ULONG %i2[8]); .globl ecp_nistz256_mul_mont .align 32 ecp_nistz256_mul_mont: save %sp,-STACK_FRAME,%sp nop call __ecp_nistz256_mul_mont nop ret restore .type ecp_nistz256_mul_mont,#function .size ecp_nistz256_mul_mont,.-ecp_nistz256_mul_mont ! void ecp_nistz256_sqr_mont(BN_ULONG %i0[8],const BN_ULONG %i2[8]); .globl ecp_nistz256_sqr_mont .align 32 ecp_nistz256_sqr_mont: save %sp,-STACK_FRAME,%sp mov $ap,$bp call __ecp_nistz256_mul_mont nop ret restore .type ecp_nistz256_sqr_mont,#function .size ecp_nistz256_sqr_mont,.-ecp_nistz256_sqr_mont ___ ######################################################################## # Special thing to keep in mind is that $t0-$t7 hold 64-bit values, # while all others are meant to keep 32. "Meant to" means that additions # to @acc[0-7] do "contaminate" upper bits, but they are cleared before # they can affect outcome (follow 'and' with $mask). Also keep in mind # that addition with carry is addition with 32-bit carry, even though # CPU is 64-bit. [Addition with 64-bit carry was introduced in T3, see # below for VIS3 code paths.] $code.=<<___; .align 32 __ecp_nistz256_mul_mont: ld [$bp+0],$bi ! b[0] mov -1,$mask ld [$ap+0],$a0 srl $mask,0,$mask ! 0xffffffff ld [$ap+4],$t1 ld [$ap+8],$t2 ld [$ap+12],$t3 ld [$ap+16],$t4 ld [$ap+20],$t5 ld [$ap+24],$t6 ld [$ap+28],$t7 mulx $a0,$bi,$t0 ! a[0-7]*b[0], 64-bit results mulx $t1,$bi,$t1 mulx $t2,$bi,$t2 mulx $t3,$bi,$t3 mulx $t4,$bi,$t4 mulx $t5,$bi,$t5 mulx $t6,$bi,$t6 mulx $t7,$bi,$t7 srlx $t0,32,@acc[1] ! extract high parts srlx $t1,32,@acc[2] srlx $t2,32,@acc[3] srlx $t3,32,@acc[4] srlx $t4,32,@acc[5] srlx $t5,32,@acc[6] srlx $t6,32,@acc[7] srlx $t7,32,@acc[0] ! "@acc[8]" mov 0,$carry ___ for($i=1;$i<8;$i++) { $code.=<<___; addcc @acc[1],$t1,@acc[1] ! accumulate high parts ld [$bp+4*$i],$bi ! b[$i] ld [$ap+4],$t1 ! re-load a[1-7] addccc @acc[2],$t2,@acc[2] addccc @acc[3],$t3,@acc[3] ld [$ap+8],$t2 ld [$ap+12],$t3 addccc @acc[4],$t4,@acc[4] addccc @acc[5],$t5,@acc[5] ld [$ap+16],$t4 ld [$ap+20],$t5 addccc @acc[6],$t6,@acc[6] addccc @acc[7],$t7,@acc[7] ld [$ap+24],$t6 ld [$ap+28],$t7 addccc @acc[0],$carry,@acc[0] ! "@acc[8]" addc %g0,%g0,$carry ___ # Reduction iteration is normally performed by accumulating # result of multiplication of modulus by "magic" digit [and # omitting least significant word, which is guaranteed to # be 0], but thanks to special form of modulus and "magic" # digit being equal to least significant word, it can be # performed with additions and subtractions alone. Indeed: # # ffff.0001.0000.0000.0000.ffff.ffff.ffff # * abcd # + xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.abcd # # Now observing that ff..ff*x = (2^n-1)*x = 2^n*x-x, we # rewrite above as: # # xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.abcd # + abcd.0000.abcd.0000.0000.abcd.0000.0000.0000 # - abcd.0000.0000.0000.0000.0000.0000.abcd # # or marking redundant operations: # # xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.---- # + abcd.0000.abcd.0000.0000.abcd.----.----.---- # - abcd.----.----.----.----.----.----.---- $code.=<<___; ! multiplication-less reduction addcc @acc[3],$t0,@acc[3] ! r[3]+=r[0] addccc @acc[4],%g0,@acc[4] ! r[4]+=0 and @acc[1],$mask,@acc[1] and @acc[2],$mask,@acc[2] addccc @acc[5],%g0,@acc[5] ! r[5]+=0 addccc @acc[6],$t0,@acc[6] ! r[6]+=r[0] and @acc[3],$mask,@acc[3] and @acc[4],$mask,@acc[4] addccc @acc[7],%g0,@acc[7] ! r[7]+=0 addccc @acc[0],$t0,@acc[0] ! r[8]+=r[0] "@acc[8]" and @acc[5],$mask,@acc[5] and @acc[6],$mask,@acc[6] addc $carry,%g0,$carry ! top-most carry subcc @acc[7],$t0,@acc[7] ! r[7]-=r[0] subccc @acc[0],%g0,@acc[0] ! r[8]-=0 "@acc[8]" subc $carry,%g0,$carry ! top-most carry and @acc[7],$mask,@acc[7] and @acc[0],$mask,@acc[0] ! "@acc[8]" ___ push(@acc,shift(@acc)); # rotate registers to "omit" acc[0] $code.=<<___; mulx $a0,$bi,$t0 ! a[0-7]*b[$i], 64-bit results mulx $t1,$bi,$t1 mulx $t2,$bi,$t2 mulx $t3,$bi,$t3 mulx $t4,$bi,$t4 mulx $t5,$bi,$t5 mulx $t6,$bi,$t6 mulx $t7,$bi,$t7 add @acc[0],$t0,$t0 ! accumulate low parts, can't overflow add @acc[1],$t1,$t1 srlx $t0,32,@acc[1] ! extract high parts add @acc[2],$t2,$t2 srlx $t1,32,@acc[2] add @acc[3],$t3,$t3 srlx $t2,32,@acc[3] add @acc[4],$t4,$t4 srlx $t3,32,@acc[4] add @acc[5],$t5,$t5 srlx $t4,32,@acc[5] add @acc[6],$t6,$t6 srlx $t5,32,@acc[6] add @acc[7],$t7,$t7 srlx $t6,32,@acc[7] srlx $t7,32,@acc[0] ! "@acc[8]" ___ } $code.=<<___; addcc @acc[1],$t1,@acc[1] ! accumulate high parts addccc @acc[2],$t2,@acc[2] addccc @acc[3],$t3,@acc[3] addccc @acc[4],$t4,@acc[4] addccc @acc[5],$t5,@acc[5] addccc @acc[6],$t6,@acc[6] addccc @acc[7],$t7,@acc[7] addccc @acc[0],$carry,@acc[0] ! "@acc[8]" addc %g0,%g0,$carry addcc @acc[3],$t0,@acc[3] ! multiplication-less reduction addccc @acc[4],%g0,@acc[4] addccc @acc[5],%g0,@acc[5] addccc @acc[6],$t0,@acc[6] addccc @acc[7],%g0,@acc[7] addccc @acc[0],$t0,@acc[0] ! "@acc[8]" addc $carry,%g0,$carry subcc @acc[7],$t0,@acc[7] subccc @acc[0],%g0,@acc[0] ! "@acc[8]" subc $carry,%g0,$carry ! top-most carry ___ push(@acc,shift(@acc)); # rotate registers to omit acc[0] $code.=<<___; ! Final step is "if result > mod, subtract mod", but we do it ! "other way around", namely subtract modulus from result ! and if it borrowed, add modulus back. subcc @acc[0],-1,@acc[0] ! subtract modulus subccc @acc[1],-1,@acc[1] subccc @acc[2],-1,@acc[2] subccc @acc[3],0,@acc[3] subccc @acc[4],0,@acc[4] subccc @acc[5],0,@acc[5] subccc @acc[6],1,@acc[6] subccc @acc[7],-1,@acc[7] subc $carry,0,$carry ! broadcast borrow bit ! Note that because mod has special form, i.e. consists of ! 0xffffffff, 1 and 0s, we can conditionally synthesize it by ! using value of broadcasted borrow and the borrow bit itself. ! To minimize dependency chain we first broadcast and then ! extract the bit by negating (follow $bi). addcc @acc[0],$carry,@acc[0] ! add modulus or zero addccc @acc[1],$carry,@acc[1] neg $carry,$bi st @acc[0],[$rp] addccc @acc[2],$carry,@acc[2] st @acc[1],[$rp+4] addccc @acc[3],0,@acc[3] st @acc[2],[$rp+8] addccc @acc[4],0,@acc[4] st @acc[3],[$rp+12] addccc @acc[5],0,@acc[5] st @acc[4],[$rp+16] addccc @acc[6],$bi,@acc[6] st @acc[5],[$rp+20] addc @acc[7],$carry,@acc[7] st @acc[6],[$rp+24] retl st @acc[7],[$rp+28] .type __ecp_nistz256_mul_mont,#function .size __ecp_nistz256_mul_mont,.-__ecp_nistz256_mul_mont ! void ecp_nistz256_add(BN_ULONG %i0[8],const BN_ULONG %i1[8], ! const BN_ULONG %i2[8]); .globl ecp_nistz256_add .align 32 ecp_nistz256_add: save %sp,-STACK_FRAME,%sp ld [$ap],@acc[0] ld [$ap+4],@acc[1] ld [$ap+8],@acc[2] ld [$ap+12],@acc[3] ld [$ap+16],@acc[4] ld [$ap+20],@acc[5] ld [$ap+24],@acc[6] call __ecp_nistz256_add ld [$ap+28],@acc[7] ret restore .type ecp_nistz256_add,#function .size ecp_nistz256_add,.-ecp_nistz256_add .align 32 __ecp_nistz256_add: ld [$bp+0],$t0 ! b[0] ld [$bp+4],$t1 ld [$bp+8],$t2 ld [$bp+12],$t3 addcc @acc[0],$t0,@acc[0] ld [$bp+16],$t4 ld [$bp+20],$t5 addccc @acc[1],$t1,@acc[1] ld [$bp+24],$t6 ld [$bp+28],$t7 addccc @acc[2],$t2,@acc[2] addccc @acc[3],$t3,@acc[3] addccc @acc[4],$t4,@acc[4] addccc @acc[5],$t5,@acc[5] addccc @acc[6],$t6,@acc[6] addccc @acc[7],$t7,@acc[7] addc %g0,%g0,$carry .Lreduce_by_sub: ! if a+b >= modulus, subtract modulus. ! ! But since comparison implies subtraction, we subtract ! modulus and then add it back if subraction borrowed. subcc @acc[0],-1,@acc[0] subccc @acc[1],-1,@acc[1] subccc @acc[2],-1,@acc[2] subccc @acc[3], 0,@acc[3] subccc @acc[4], 0,@acc[4] subccc @acc[5], 0,@acc[5] subccc @acc[6], 1,@acc[6] subccc @acc[7],-1,@acc[7] subc $carry,0,$carry ! Note that because mod has special form, i.e. consists of ! 0xffffffff, 1 and 0s, we can conditionally synthesize it by ! using value of borrow and its negative. addcc @acc[0],$carry,@acc[0] ! add synthesized modulus addccc @acc[1],$carry,@acc[1] neg $carry,$bi st @acc[0],[$rp] addccc @acc[2],$carry,@acc[2] st @acc[1],[$rp+4] addccc @acc[3],0,@acc[3] st @acc[2],[$rp+8] addccc @acc[4],0,@acc[4] st @acc[3],[$rp+12] addccc @acc[5],0,@acc[5] st @acc[4],[$rp+16] addccc @acc[6],$bi,@acc[6] st @acc[5],[$rp+20] addc @acc[7],$carry,@acc[7] st @acc[6],[$rp+24] retl st @acc[7],[$rp+28] .type __ecp_nistz256_add,#function .size __ecp_nistz256_add,.-__ecp_nistz256_add ! void ecp_nistz256_mul_by_2(BN_ULONG %i0[8],const BN_ULONG %i1[8]); .globl ecp_nistz256_mul_by_2 .align 32 ecp_nistz256_mul_by_2: save %sp,-STACK_FRAME,%sp ld [$ap],@acc[0] ld [$ap+4],@acc[1] ld [$ap+8],@acc[2] ld [$ap+12],@acc[3] ld [$ap+16],@acc[4] ld [$ap+20],@acc[5] ld [$ap+24],@acc[6] call __ecp_nistz256_mul_by_2 ld [$ap+28],@acc[7] ret restore .type ecp_nistz256_mul_by_2,#function .size ecp_nistz256_mul_by_2,.-ecp_nistz256_mul_by_2 .align 32 __ecp_nistz256_mul_by_2: addcc @acc[0],@acc[0],@acc[0] ! a+a=2*a addccc @acc[1],@acc[1],@acc[1] addccc @acc[2],@acc[2],@acc[2] addccc @acc[3],@acc[3],@acc[3] addccc @acc[4],@acc[4],@acc[4] addccc @acc[5],@acc[5],@acc[5] addccc @acc[6],@acc[6],@acc[6] addccc @acc[7],@acc[7],@acc[7] b .Lreduce_by_sub addc %g0,%g0,$carry .type __ecp_nistz256_mul_by_2,#function .size __ecp_nistz256_mul_by_2,.-__ecp_nistz256_mul_by_2 ! void ecp_nistz256_mul_by_3(BN_ULONG %i0[8],const BN_ULONG %i1[8]); .globl ecp_nistz256_mul_by_3 .align 32 ecp_nistz256_mul_by_3: save %sp,-STACK_FRAME,%sp ld [$ap],@acc[0] ld [$ap+4],@acc[1] ld [$ap+8],@acc[2] ld [$ap+12],@acc[3] ld [$ap+16],@acc[4] ld [$ap+20],@acc[5] ld [$ap+24],@acc[6] call __ecp_nistz256_mul_by_3 ld [$ap+28],@acc[7] ret restore .type ecp_nistz256_mul_by_3,#function .size ecp_nistz256_mul_by_3,.-ecp_nistz256_mul_by_3 .align 32 __ecp_nistz256_mul_by_3: addcc @acc[0],@acc[0],$t0 ! a+a=2*a addccc @acc[1],@acc[1],$t1 addccc @acc[2],@acc[2],$t2 addccc @acc[3],@acc[3],$t3 addccc @acc[4],@acc[4],$t4 addccc @acc[5],@acc[5],$t5 addccc @acc[6],@acc[6],$t6 addccc @acc[7],@acc[7],$t7 addc %g0,%g0,$carry subcc $t0,-1,$t0 ! .Lreduce_by_sub but without stores subccc $t1,-1,$t1 subccc $t2,-1,$t2 subccc $t3, 0,$t3 subccc $t4, 0,$t4 subccc $t5, 0,$t5 subccc $t6, 1,$t6 subccc $t7,-1,$t7 subc $carry,0,$carry addcc $t0,$carry,$t0 ! add synthesized modulus addccc $t1,$carry,$t1 neg $carry,$bi addccc $t2,$carry,$t2 addccc $t3,0,$t3 addccc $t4,0,$t4 addccc $t5,0,$t5 addccc $t6,$bi,$t6 addc $t7,$carry,$t7 addcc $t0,@acc[0],@acc[0] ! 2*a+a=3*a addccc $t1,@acc[1],@acc[1] addccc $t2,@acc[2],@acc[2] addccc $t3,@acc[3],@acc[3] addccc $t4,@acc[4],@acc[4] addccc $t5,@acc[5],@acc[5] addccc $t6,@acc[6],@acc[6] addccc $t7,@acc[7],@acc[7] b .Lreduce_by_sub addc %g0,%g0,$carry .type __ecp_nistz256_mul_by_3,#function .size __ecp_nistz256_mul_by_3,.-__ecp_nistz256_mul_by_3 ! void ecp_nistz256_sub(BN_ULONG %i0[8],const BN_ULONG %i1[8], ! const BN_ULONG %i2[8]); .globl ecp_nistz256_sub .align 32 ecp_nistz256_sub: save %sp,-STACK_FRAME,%sp ld [$ap],@acc[0] ld [$ap+4],@acc[1] ld [$ap+8],@acc[2] ld [$ap+12],@acc[3] ld [$ap+16],@acc[4] ld [$ap+20],@acc[5] ld [$ap+24],@acc[6] call __ecp_nistz256_sub_from ld [$ap+28],@acc[7] ret restore .type ecp_nistz256_sub,#function .size ecp_nistz256_sub,.-ecp_nistz256_sub ! void ecp_nistz256_neg(BN_ULONG %i0[8],const BN_ULONG %i1[8]); .globl ecp_nistz256_neg .align 32 ecp_nistz256_neg: save %sp,-STACK_FRAME,%sp mov $ap,$bp mov 0,@acc[0] mov 0,@acc[1] mov 0,@acc[2] mov 0,@acc[3] mov 0,@acc[4] mov 0,@acc[5] mov 0,@acc[6] call __ecp_nistz256_sub_from mov 0,@acc[7] ret restore .type ecp_nistz256_neg,#function .size ecp_nistz256_neg,.-ecp_nistz256_neg .align 32 __ecp_nistz256_sub_from: ld [$bp+0],$t0 ! b[0] ld [$bp+4],$t1 ld [$bp+8],$t2 ld [$bp+12],$t3 subcc @acc[0],$t0,@acc[0] ld [$bp+16],$t4 ld [$bp+20],$t5 subccc @acc[1],$t1,@acc[1] subccc @acc[2],$t2,@acc[2] ld [$bp+24],$t6 ld [$bp+28],$t7 subccc @acc[3],$t3,@acc[3] subccc @acc[4],$t4,@acc[4] subccc @acc[5],$t5,@acc[5] subccc @acc[6],$t6,@acc[6] subccc @acc[7],$t7,@acc[7] subc %g0,%g0,$carry ! broadcast borrow bit .Lreduce_by_add: ! if a-b borrows, add modulus. ! ! Note that because mod has special form, i.e. consists of ! 0xffffffff, 1 and 0s, we can conditionally synthesize it by ! using value of broadcasted borrow and the borrow bit itself. ! To minimize dependency chain we first broadcast and then ! extract the bit by negating (follow $bi). addcc @acc[0],$carry,@acc[0] ! add synthesized modulus addccc @acc[1],$carry,@acc[1] neg $carry,$bi st @acc[0],[$rp] addccc @acc[2],$carry,@acc[2] st @acc[1],[$rp+4] addccc @acc[3],0,@acc[3] st @acc[2],[$rp+8] addccc @acc[4],0,@acc[4] st @acc[3],[$rp+12] addccc @acc[5],0,@acc[5] st @acc[4],[$rp+16] addccc @acc[6],$bi,@acc[6] st @acc[5],[$rp+20] addc @acc[7],$carry,@acc[7] st @acc[6],[$rp+24] retl st @acc[7],[$rp+28] .type __ecp_nistz256_sub_from,#function .size __ecp_nistz256_sub_from,.-__ecp_nistz256_sub_from .align 32 __ecp_nistz256_sub_morf: ld [$bp+0],$t0 ! b[0] ld [$bp+4],$t1 ld [$bp+8],$t2 ld [$bp+12],$t3 subcc $t0,@acc[0],@acc[0] ld [$bp+16],$t4 ld [$bp+20],$t5 subccc $t1,@acc[1],@acc[1] subccc $t2,@acc[2],@acc[2] ld [$bp+24],$t6 ld [$bp+28],$t7 subccc $t3,@acc[3],@acc[3] subccc $t4,@acc[4],@acc[4] subccc $t5,@acc[5],@acc[5] subccc $t6,@acc[6],@acc[6] subccc $t7,@acc[7],@acc[7] b .Lreduce_by_add subc %g0,%g0,$carry ! broadcast borrow bit .type __ecp_nistz256_sub_morf,#function .size __ecp_nistz256_sub_morf,.-__ecp_nistz256_sub_morf ! void ecp_nistz256_div_by_2(BN_ULONG %i0[8],const BN_ULONG %i1[8]); .globl ecp_nistz256_div_by_2 .align 32 ecp_nistz256_div_by_2: save %sp,-STACK_FRAME,%sp ld [$ap],@acc[0] ld [$ap+4],@acc[1] ld [$ap+8],@acc[2] ld [$ap+12],@acc[3] ld [$ap+16],@acc[4] ld [$ap+20],@acc[5] ld [$ap+24],@acc[6] call __ecp_nistz256_div_by_2 ld [$ap+28],@acc[7] ret restore .type ecp_nistz256_div_by_2,#function .size ecp_nistz256_div_by_2,.-ecp_nistz256_div_by_2 .align 32 __ecp_nistz256_div_by_2: ! ret = (a is odd ? a+mod : a) >> 1 and @acc[0],1,$bi neg $bi,$carry addcc @acc[0],$carry,@acc[0] addccc @acc[1],$carry,@acc[1] addccc @acc[2],$carry,@acc[2] addccc @acc[3],0,@acc[3] addccc @acc[4],0,@acc[4] addccc @acc[5],0,@acc[5] addccc @acc[6],$bi,@acc[6] addccc @acc[7],$carry,@acc[7] addc %g0,%g0,$carry ! ret >>= 1 srl @acc[0],1,@acc[0] sll @acc[1],31,$t0 srl @acc[1],1,@acc[1] or @acc[0],$t0,@acc[0] sll @acc[2],31,$t1 srl @acc[2],1,@acc[2] or @acc[1],$t1,@acc[1] sll @acc[3],31,$t2 st @acc[0],[$rp] srl @acc[3],1,@acc[3] or @acc[2],$t2,@acc[2] sll @acc[4],31,$t3 st @acc[1],[$rp+4] srl @acc[4],1,@acc[4] or @acc[3],$t3,@acc[3] sll @acc[5],31,$t4 st @acc[2],[$rp+8] srl @acc[5],1,@acc[5] or @acc[4],$t4,@acc[4] sll @acc[6],31,$t5 st @acc[3],[$rp+12] srl @acc[6],1,@acc[6] or @acc[5],$t5,@acc[5] sll @acc[7],31,$t6 st @acc[4],[$rp+16] srl @acc[7],1,@acc[7] or @acc[6],$t6,@acc[6] sll $carry,31,$t7 st @acc[5],[$rp+20] or @acc[7],$t7,@acc[7] st @acc[6],[$rp+24] retl st @acc[7],[$rp+28] .type __ecp_nistz256_div_by_2,#function .size __ecp_nistz256_div_by_2,.-__ecp_nistz256_div_by_2 ___ ######################################################################## # following subroutines are "literal" implementation of those found in # ecp_nistz256.c # ######################################################################## # void ecp_nistz256_point_double(P256_POINT *out,const P256_POINT *inp); # { my ($S,$M,$Zsqr,$tmp0)=map(32*$_,(0..3)); # above map() describes stack layout with 4 temporary # 256-bit vectors on top. $code.=<<___; #ifdef __PIC__ SPARC_PIC_THUNK(%g1) #endif .globl ecp_nistz256_point_double .align 32 ecp_nistz256_point_double: SPARC_LOAD_ADDRESS_LEAF(OPENSSL_sparcv9cap_P,%g1,%g5) ld [%g1],%g1 ! OPENSSL_sparcv9cap_P[0] and %g1,(SPARCV9_VIS3|SPARCV9_64BIT_STACK),%g1 cmp %g1,(SPARCV9_VIS3|SPARCV9_64BIT_STACK) be ecp_nistz256_point_double_vis3 nop save %sp,-STACK_FRAME-32*4,%sp mov $rp,$rp_real mov $ap,$ap_real .Lpoint_double_shortcut: ld [$ap+32],@acc[0] ld [$ap+32+4],@acc[1] ld [$ap+32+8],@acc[2] ld [$ap+32+12],@acc[3] ld [$ap+32+16],@acc[4] ld [$ap+32+20],@acc[5] ld [$ap+32+24],@acc[6] ld [$ap+32+28],@acc[7] call __ecp_nistz256_mul_by_2 ! p256_mul_by_2(S, in_y); add %sp,LOCALS+$S,$rp add $ap_real,64,$bp add $ap_real,64,$ap call __ecp_nistz256_mul_mont ! p256_sqr_mont(Zsqr, in_z); add %sp,LOCALS+$Zsqr,$rp add $ap_real,0,$bp call __ecp_nistz256_add ! p256_add(M, Zsqr, in_x); add %sp,LOCALS+$M,$rp add %sp,LOCALS+$S,$bp add %sp,LOCALS+$S,$ap call __ecp_nistz256_mul_mont ! p256_sqr_mont(S, S); add %sp,LOCALS+$S,$rp ld [$ap_real],@acc[0] add %sp,LOCALS+$Zsqr,$bp ld [$ap_real+4],@acc[1] ld [$ap_real+8],@acc[2] ld [$ap_real+12],@acc[3] ld [$ap_real+16],@acc[4] ld [$ap_real+20],@acc[5] ld [$ap_real+24],@acc[6] ld [$ap_real+28],@acc[7] call __ecp_nistz256_sub_from ! p256_sub(Zsqr, in_x, Zsqr); add %sp,LOCALS+$Zsqr,$rp add $ap_real,32,$bp add $ap_real,64,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(tmp0, in_z, in_y); add %sp,LOCALS+$tmp0,$rp call __ecp_nistz256_mul_by_2 ! p256_mul_by_2(res_z, tmp0); add $rp_real,64,$rp add %sp,LOCALS+$Zsqr,$bp add %sp,LOCALS+$M,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(M, M, Zsqr); add %sp,LOCALS+$M,$rp call __ecp_nistz256_mul_by_3 ! p256_mul_by_3(M, M); add %sp,LOCALS+$M,$rp add %sp,LOCALS+$S,$bp add %sp,LOCALS+$S,$ap call __ecp_nistz256_mul_mont ! p256_sqr_mont(tmp0, S); add %sp,LOCALS+$tmp0,$rp call __ecp_nistz256_div_by_2 ! p256_div_by_2(res_y, tmp0); add $rp_real,32,$rp add $ap_real,0,$bp add %sp,LOCALS+$S,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(S, S, in_x); add %sp,LOCALS+$S,$rp call __ecp_nistz256_mul_by_2 ! p256_mul_by_2(tmp0, S); add %sp,LOCALS+$tmp0,$rp add %sp,LOCALS+$M,$bp add %sp,LOCALS+$M,$ap call __ecp_nistz256_mul_mont ! p256_sqr_mont(res_x, M); add $rp_real,0,$rp add %sp,LOCALS+$tmp0,$bp call __ecp_nistz256_sub_from ! p256_sub(res_x, res_x, tmp0); add $rp_real,0,$rp add %sp,LOCALS+$S,$bp call __ecp_nistz256_sub_morf ! p256_sub(S, S, res_x); add %sp,LOCALS+$S,$rp add %sp,LOCALS+$M,$bp add %sp,LOCALS+$S,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(S, S, M); add %sp,LOCALS+$S,$rp add $rp_real,32,$bp call __ecp_nistz256_sub_from ! p256_sub(res_y, S, res_y); add $rp_real,32,$rp ret restore .type ecp_nistz256_point_double,#function .size ecp_nistz256_point_double,.-ecp_nistz256_point_double ___ } ######################################################################## # void ecp_nistz256_point_add(P256_POINT *out,const P256_POINT *in1, # const P256_POINT *in2); { my ($res_x,$res_y,$res_z, $H,$Hsqr,$R,$Rsqr,$Hcub, $U1,$U2,$S1,$S2)=map(32*$_,(0..11)); my ($Z1sqr, $Z2sqr) = ($Hsqr, $Rsqr); # above map() describes stack layout with 12 temporary # 256-bit vectors on top. Then we reserve some space for # !in1infty, !in2infty, result of check for zero and return pointer. my $bp_real=$rp_real; $code.=<<___; .globl ecp_nistz256_point_add .align 32 ecp_nistz256_point_add: SPARC_LOAD_ADDRESS_LEAF(OPENSSL_sparcv9cap_P,%g1,%g5) ld [%g1],%g1 ! OPENSSL_sparcv9cap_P[0] and %g1,(SPARCV9_VIS3|SPARCV9_64BIT_STACK),%g1 cmp %g1,(SPARCV9_VIS3|SPARCV9_64BIT_STACK) be ecp_nistz256_point_add_vis3 nop save %sp,-STACK_FRAME-32*12-32,%sp stx $rp,[%fp+STACK_BIAS-8] ! off-load $rp mov $ap,$ap_real mov $bp,$bp_real ld [$bp+64],$t0 ! in2_z ld [$bp+64+4],$t1 ld [$bp+64+8],$t2 ld [$bp+64+12],$t3 ld [$bp+64+16],$t4 ld [$bp+64+20],$t5 ld [$bp+64+24],$t6 ld [$bp+64+28],$t7 or $t1,$t0,$t0 or $t3,$t2,$t2 or $t5,$t4,$t4 or $t7,$t6,$t6 or $t2,$t0,$t0 or $t6,$t4,$t4 or $t4,$t0,$t0 ! !in2infty movrnz $t0,-1,$t0 st $t0,[%fp+STACK_BIAS-12] ld [$ap+64],$t0 ! in1_z ld [$ap+64+4],$t1 ld [$ap+64+8],$t2 ld [$ap+64+12],$t3 ld [$ap+64+16],$t4 ld [$ap+64+20],$t5 ld [$ap+64+24],$t6 ld [$ap+64+28],$t7 or $t1,$t0,$t0 or $t3,$t2,$t2 or $t5,$t4,$t4 or $t7,$t6,$t6 or $t2,$t0,$t0 or $t6,$t4,$t4 or $t4,$t0,$t0 ! !in1infty movrnz $t0,-1,$t0 st $t0,[%fp+STACK_BIAS-16] add $bp_real,64,$bp add $bp_real,64,$ap call __ecp_nistz256_mul_mont ! p256_sqr_mont(Z2sqr, in2_z); add %sp,LOCALS+$Z2sqr,$rp add $ap_real,64,$bp add $ap_real,64,$ap call __ecp_nistz256_mul_mont ! p256_sqr_mont(Z1sqr, in1_z); add %sp,LOCALS+$Z1sqr,$rp add $bp_real,64,$bp add %sp,LOCALS+$Z2sqr,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(S1, Z2sqr, in2_z); add %sp,LOCALS+$S1,$rp add $ap_real,64,$bp add %sp,LOCALS+$Z1sqr,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(S2, Z1sqr, in1_z); add %sp,LOCALS+$S2,$rp add $ap_real,32,$bp add %sp,LOCALS+$S1,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(S1, S1, in1_y); add %sp,LOCALS+$S1,$rp add $bp_real,32,$bp add %sp,LOCALS+$S2,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(S2, S2, in2_y); add %sp,LOCALS+$S2,$rp add %sp,LOCALS+$S1,$bp call __ecp_nistz256_sub_from ! p256_sub(R, S2, S1); add %sp,LOCALS+$R,$rp or @acc[1],@acc[0],@acc[0] ! see if result is zero or @acc[3],@acc[2],@acc[2] or @acc[5],@acc[4],@acc[4] or @acc[7],@acc[6],@acc[6] or @acc[2],@acc[0],@acc[0] or @acc[6],@acc[4],@acc[4] or @acc[4],@acc[0],@acc[0] st @acc[0],[%fp+STACK_BIAS-20] add $ap_real,0,$bp add %sp,LOCALS+$Z2sqr,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(U1, in1_x, Z2sqr); add %sp,LOCALS+$U1,$rp add $bp_real,0,$bp add %sp,LOCALS+$Z1sqr,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(U2, in2_x, Z1sqr); add %sp,LOCALS+$U2,$rp add %sp,LOCALS+$U1,$bp call __ecp_nistz256_sub_from ! p256_sub(H, U2, U1); add %sp,LOCALS+$H,$rp or @acc[1],@acc[0],@acc[0] ! see if result is zero or @acc[3],@acc[2],@acc[2] or @acc[5],@acc[4],@acc[4] or @acc[7],@acc[6],@acc[6] or @acc[2],@acc[0],@acc[0] or @acc[6],@acc[4],@acc[4] orcc @acc[4],@acc[0],@acc[0] bne,pt %icc,.Ladd_proceed ! is_equal(U1,U2)? nop ld [%fp+STACK_BIAS-12],$t0 ld [%fp+STACK_BIAS-16],$t1 ld [%fp+STACK_BIAS-20],$t2 andcc $t0,$t1,%g0 be,pt %icc,.Ladd_proceed ! (in1infty || in2infty)? nop andcc $t2,$t2,%g0 be,pt %icc,.Ladd_double ! is_equal(S1,S2)? nop ldx [%fp+STACK_BIAS-8],$rp st %g0,[$rp] st %g0,[$rp+4] st %g0,[$rp+8] st %g0,[$rp+12] st %g0,[$rp+16] st %g0,[$rp+20] st %g0,[$rp+24] st %g0,[$rp+28] st %g0,[$rp+32] st %g0,[$rp+32+4] st %g0,[$rp+32+8] st %g0,[$rp+32+12] st %g0,[$rp+32+16] st %g0,[$rp+32+20] st %g0,[$rp+32+24] st %g0,[$rp+32+28] st %g0,[$rp+64] st %g0,[$rp+64+4] st %g0,[$rp+64+8] st %g0,[$rp+64+12] st %g0,[$rp+64+16] st %g0,[$rp+64+20] st %g0,[$rp+64+24] st %g0,[$rp+64+28] b .Ladd_done nop .align 16 .Ladd_double: ldx [%fp+STACK_BIAS-8],$rp_real mov $ap_real,$ap b .Lpoint_double_shortcut add %sp,32*(12-4)+32,%sp ! difference in frame sizes .align 16 .Ladd_proceed: add %sp,LOCALS+$R,$bp add %sp,LOCALS+$R,$ap call __ecp_nistz256_mul_mont ! p256_sqr_mont(Rsqr, R); add %sp,LOCALS+$Rsqr,$rp add $ap_real,64,$bp add %sp,LOCALS+$H,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(res_z, H, in1_z); add %sp,LOCALS+$res_z,$rp add %sp,LOCALS+$H,$bp add %sp,LOCALS+$H,$ap call __ecp_nistz256_mul_mont ! p256_sqr_mont(Hsqr, H); add %sp,LOCALS+$Hsqr,$rp add $bp_real,64,$bp add %sp,LOCALS+$res_z,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(res_z, res_z, in2_z); add %sp,LOCALS+$res_z,$rp add %sp,LOCALS+$H,$bp add %sp,LOCALS+$Hsqr,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(Hcub, Hsqr, H); add %sp,LOCALS+$Hcub,$rp add %sp,LOCALS+$U1,$bp add %sp,LOCALS+$Hsqr,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(U2, U1, Hsqr); add %sp,LOCALS+$U2,$rp call __ecp_nistz256_mul_by_2 ! p256_mul_by_2(Hsqr, U2); add %sp,LOCALS+$Hsqr,$rp add %sp,LOCALS+$Rsqr,$bp call __ecp_nistz256_sub_morf ! p256_sub(res_x, Rsqr, Hsqr); add %sp,LOCALS+$res_x,$rp add %sp,LOCALS+$Hcub,$bp call __ecp_nistz256_sub_from ! p256_sub(res_x, res_x, Hcub); add %sp,LOCALS+$res_x,$rp add %sp,LOCALS+$U2,$bp call __ecp_nistz256_sub_morf ! p256_sub(res_y, U2, res_x); add %sp,LOCALS+$res_y,$rp add %sp,LOCALS+$Hcub,$bp add %sp,LOCALS+$S1,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(S2, S1, Hcub); add %sp,LOCALS+$S2,$rp add %sp,LOCALS+$R,$bp add %sp,LOCALS+$res_y,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(res_y, res_y, R); add %sp,LOCALS+$res_y,$rp add %sp,LOCALS+$S2,$bp call __ecp_nistz256_sub_from ! p256_sub(res_y, res_y, S2); add %sp,LOCALS+$res_y,$rp ld [%fp+STACK_BIAS-16],$t1 ! !in1infty ld [%fp+STACK_BIAS-12],$t2 ! !in2infty ldx [%fp+STACK_BIAS-8],$rp ___ for($i=0;$i<96;$i+=8) { # conditional moves $code.=<<___; ld [%sp+LOCALS+$i],@acc[0] ! res ld [%sp+LOCALS+$i+4],@acc[1] ld [$bp_real+$i],@acc[2] ! in2 ld [$bp_real+$i+4],@acc[3] ld [$ap_real+$i],@acc[4] ! in1 ld [$ap_real+$i+4],@acc[5] movrz $t1,@acc[2],@acc[0] movrz $t1,@acc[3],@acc[1] movrz $t2,@acc[4],@acc[0] movrz $t2,@acc[5],@acc[1] st @acc[0],[$rp+$i] st @acc[1],[$rp+$i+4] ___ } $code.=<<___; .Ladd_done: ret restore .type ecp_nistz256_point_add,#function .size ecp_nistz256_point_add,.-ecp_nistz256_point_add ___ } ######################################################################## # void ecp_nistz256_point_add_affine(P256_POINT *out,const P256_POINT *in1, # const P256_POINT_AFFINE *in2); { my ($res_x,$res_y,$res_z, $U2,$S2,$H,$R,$Hsqr,$Hcub,$Rsqr)=map(32*$_,(0..9)); my $Z1sqr = $S2; # above map() describes stack layout with 10 temporary # 256-bit vectors on top. Then we reserve some space for # !in1infty, !in2infty, result of check for zero and return pointer. my @ONE_mont=(1,0,0,-1,-1,-1,-2,0); my $bp_real=$rp_real; $code.=<<___; .globl ecp_nistz256_point_add_affine .align 32 ecp_nistz256_point_add_affine: SPARC_LOAD_ADDRESS_LEAF(OPENSSL_sparcv9cap_P,%g1,%g5) ld [%g1],%g1 ! OPENSSL_sparcv9cap_P[0] and %g1,(SPARCV9_VIS3|SPARCV9_64BIT_STACK),%g1 cmp %g1,(SPARCV9_VIS3|SPARCV9_64BIT_STACK) be ecp_nistz256_point_add_affine_vis3 nop save %sp,-STACK_FRAME-32*10-32,%sp stx $rp,[%fp+STACK_BIAS-8] ! off-load $rp mov $ap,$ap_real mov $bp,$bp_real ld [$ap+64],$t0 ! in1_z ld [$ap+64+4],$t1 ld [$ap+64+8],$t2 ld [$ap+64+12],$t3 ld [$ap+64+16],$t4 ld [$ap+64+20],$t5 ld [$ap+64+24],$t6 ld [$ap+64+28],$t7 or $t1,$t0,$t0 or $t3,$t2,$t2 or $t5,$t4,$t4 or $t7,$t6,$t6 or $t2,$t0,$t0 or $t6,$t4,$t4 or $t4,$t0,$t0 ! !in1infty movrnz $t0,-1,$t0 st $t0,[%fp+STACK_BIAS-16] ld [$bp],@acc[0] ! in2_x ld [$bp+4],@acc[1] ld [$bp+8],@acc[2] ld [$bp+12],@acc[3] ld [$bp+16],@acc[4] ld [$bp+20],@acc[5] ld [$bp+24],@acc[6] ld [$bp+28],@acc[7] ld [$bp+32],$t0 ! in2_y ld [$bp+32+4],$t1 ld [$bp+32+8],$t2 ld [$bp+32+12],$t3 ld [$bp+32+16],$t4 ld [$bp+32+20],$t5 ld [$bp+32+24],$t6 ld [$bp+32+28],$t7 or @acc[1],@acc[0],@acc[0] or @acc[3],@acc[2],@acc[2] or @acc[5],@acc[4],@acc[4] or @acc[7],@acc[6],@acc[6] or @acc[2],@acc[0],@acc[0] or @acc[6],@acc[4],@acc[4] or @acc[4],@acc[0],@acc[0] or $t1,$t0,$t0 or $t3,$t2,$t2 or $t5,$t4,$t4 or $t7,$t6,$t6 or $t2,$t0,$t0 or $t6,$t4,$t4 or $t4,$t0,$t0 or @acc[0],$t0,$t0 ! !in2infty movrnz $t0,-1,$t0 st $t0,[%fp+STACK_BIAS-12] add $ap_real,64,$bp add $ap_real,64,$ap call __ecp_nistz256_mul_mont ! p256_sqr_mont(Z1sqr, in1_z); add %sp,LOCALS+$Z1sqr,$rp add $bp_real,0,$bp add %sp,LOCALS+$Z1sqr,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(U2, Z1sqr, in2_x); add %sp,LOCALS+$U2,$rp add $ap_real,0,$bp call __ecp_nistz256_sub_from ! p256_sub(H, U2, in1_x); add %sp,LOCALS+$H,$rp add $ap_real,64,$bp add %sp,LOCALS+$Z1sqr,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(S2, Z1sqr, in1_z); add %sp,LOCALS+$S2,$rp add $ap_real,64,$bp add %sp,LOCALS+$H,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(res_z, H, in1_z); add %sp,LOCALS+$res_z,$rp add $bp_real,32,$bp add %sp,LOCALS+$S2,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(S2, S2, in2_y); add %sp,LOCALS+$S2,$rp add $ap_real,32,$bp call __ecp_nistz256_sub_from ! p256_sub(R, S2, in1_y); add %sp,LOCALS+$R,$rp add %sp,LOCALS+$H,$bp add %sp,LOCALS+$H,$ap call __ecp_nistz256_mul_mont ! p256_sqr_mont(Hsqr, H); add %sp,LOCALS+$Hsqr,$rp add %sp,LOCALS+$R,$bp add %sp,LOCALS+$R,$ap call __ecp_nistz256_mul_mont ! p256_sqr_mont(Rsqr, R); add %sp,LOCALS+$Rsqr,$rp add %sp,LOCALS+$H,$bp add %sp,LOCALS+$Hsqr,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(Hcub, Hsqr, H); add %sp,LOCALS+$Hcub,$rp add $ap_real,0,$bp add %sp,LOCALS+$Hsqr,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(U2, in1_x, Hsqr); add %sp,LOCALS+$U2,$rp call __ecp_nistz256_mul_by_2 ! p256_mul_by_2(Hsqr, U2); add %sp,LOCALS+$Hsqr,$rp add %sp,LOCALS+$Rsqr,$bp call __ecp_nistz256_sub_morf ! p256_sub(res_x, Rsqr, Hsqr); add %sp,LOCALS+$res_x,$rp add %sp,LOCALS+$Hcub,$bp call __ecp_nistz256_sub_from ! p256_sub(res_x, res_x, Hcub); add %sp,LOCALS+$res_x,$rp add %sp,LOCALS+$U2,$bp call __ecp_nistz256_sub_morf ! p256_sub(res_y, U2, res_x); add %sp,LOCALS+$res_y,$rp add $ap_real,32,$bp add %sp,LOCALS+$Hcub,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(S2, in1_y, Hcub); add %sp,LOCALS+$S2,$rp add %sp,LOCALS+$R,$bp add %sp,LOCALS+$res_y,$ap call __ecp_nistz256_mul_mont ! p256_mul_mont(res_y, res_y, R); add %sp,LOCALS+$res_y,$rp add %sp,LOCALS+$S2,$bp call __ecp_nistz256_sub_from ! p256_sub(res_y, res_y, S2); add %sp,LOCALS+$res_y,$rp ld [%fp+STACK_BIAS-16],$t1 ! !in1infty ld [%fp+STACK_BIAS-12],$t2 ! !in2infty ldx [%fp+STACK_BIAS-8],$rp ___ for($i=0;$i<64;$i+=8) { # conditional moves $code.=<<___; ld [%sp+LOCALS+$i],@acc[0] ! res ld [%sp+LOCALS+$i+4],@acc[1] ld [$bp_real+$i],@acc[2] ! in2 ld [$bp_real+$i+4],@acc[3] ld [$ap_real+$i],@acc[4] ! in1 ld [$ap_real+$i+4],@acc[5] movrz $t1,@acc[2],@acc[0] movrz $t1,@acc[3],@acc[1] movrz $t2,@acc[4],@acc[0] movrz $t2,@acc[5],@acc[1] st @acc[0],[$rp+$i] st @acc[1],[$rp+$i+4] ___ } for(;$i<96;$i+=8) { my $j=($i-64)/4; $code.=<<___; ld [%sp+LOCALS+$i],@acc[0] ! res ld [%sp+LOCALS+$i+4],@acc[1] ld [$ap_real+$i],@acc[4] ! in1 ld [$ap_real+$i+4],@acc[5] movrz $t1,@ONE_mont[$j],@acc[0] movrz $t1,@ONE_mont[$j+1],@acc[1] movrz $t2,@acc[4],@acc[0] movrz $t2,@acc[5],@acc[1] st @acc[0],[$rp+$i] st @acc[1],[$rp+$i+4] ___ } $code.=<<___; ret restore .type ecp_nistz256_point_add_affine,#function .size ecp_nistz256_point_add_affine,.-ecp_nistz256_point_add_affine ___ } }}} {{{ my ($out,$inp,$index)=map("%i$_",(0..2)); my $mask="%o0"; $code.=<<___; ! void ecp_nistz256_scatter_w5(void *%i0,const P256_POINT *%i1, ! int %i2); .globl ecp_nistz256_scatter_w5 .align 32 ecp_nistz256_scatter_w5: save %sp,-STACK_FRAME,%sp sll $index,2,$index add $out,$index,$out ld [$inp],%l0 ! X ld [$inp+4],%l1 ld [$inp+8],%l2 ld [$inp+12],%l3 ld [$inp+16],%l4 ld [$inp+20],%l5 ld [$inp+24],%l6 ld [$inp+28],%l7 add $inp,32,$inp st %l0,[$out+64*0-4] st %l1,[$out+64*1-4] st %l2,[$out+64*2-4] st %l3,[$out+64*3-4] st %l4,[$out+64*4-4] st %l5,[$out+64*5-4] st %l6,[$out+64*6-4] st %l7,[$out+64*7-4] add $out,64*8,$out ld [$inp],%l0 ! Y ld [$inp+4],%l1 ld [$inp+8],%l2 ld [$inp+12],%l3 ld [$inp+16],%l4 ld [$inp+20],%l5 ld [$inp+24],%l6 ld [$inp+28],%l7 add $inp,32,$inp st %l0,[$out+64*0-4] st %l1,[$out+64*1-4] st %l2,[$out+64*2-4] st %l3,[$out+64*3-4] st %l4,[$out+64*4-4] st %l5,[$out+64*5-4] st %l6,[$out+64*6-4] st %l7,[$out+64*7-4] add $out,64*8,$out ld [$inp],%l0 ! Z ld [$inp+4],%l1 ld [$inp+8],%l2 ld [$inp+12],%l3 ld [$inp+16],%l4 ld [$inp+20],%l5 ld [$inp+24],%l6 ld [$inp+28],%l7 st %l0,[$out+64*0-4] st %l1,[$out+64*1-4] st %l2,[$out+64*2-4] st %l3,[$out+64*3-4] st %l4,[$out+64*4-4] st %l5,[$out+64*5-4] st %l6,[$out+64*6-4] st %l7,[$out+64*7-4] ret restore .type ecp_nistz256_scatter_w5,#function .size ecp_nistz256_scatter_w5,.-ecp_nistz256_scatter_w5 ! void ecp_nistz256_gather_w5(P256_POINT *%i0,const void *%i1, ! int %i2); .globl ecp_nistz256_gather_w5 .align 32 ecp_nistz256_gather_w5: save %sp,-STACK_FRAME,%sp neg $index,$mask srax $mask,63,$mask add $index,$mask,$index sll $index,2,$index add $inp,$index,$inp ld [$inp+64*0],%l0 ld [$inp+64*1],%l1 ld [$inp+64*2],%l2 ld [$inp+64*3],%l3 ld [$inp+64*4],%l4 ld [$inp+64*5],%l5 ld [$inp+64*6],%l6 ld [$inp+64*7],%l7 add $inp,64*8,$inp and %l0,$mask,%l0 and %l1,$mask,%l1 st %l0,[$out] ! X and %l2,$mask,%l2 st %l1,[$out+4] and %l3,$mask,%l3 st %l2,[$out+8] and %l4,$mask,%l4 st %l3,[$out+12] and %l5,$mask,%l5 st %l4,[$out+16] and %l6,$mask,%l6 st %l5,[$out+20] and %l7,$mask,%l7 st %l6,[$out+24] st %l7,[$out+28] add $out,32,$out ld [$inp+64*0],%l0 ld [$inp+64*1],%l1 ld [$inp+64*2],%l2 ld [$inp+64*3],%l3 ld [$inp+64*4],%l4 ld [$inp+64*5],%l5 ld [$inp+64*6],%l6 ld [$inp+64*7],%l7 add $inp,64*8,$inp and %l0,$mask,%l0 and %l1,$mask,%l1 st %l0,[$out] ! Y and %l2,$mask,%l2 st %l1,[$out+4] and %l3,$mask,%l3 st %l2,[$out+8] and %l4,$mask,%l4 st %l3,[$out+12] and %l5,$mask,%l5 st %l4,[$out+16] and %l6,$mask,%l6 st %l5,[$out+20] and %l7,$mask,%l7 st %l6,[$out+24] st %l7,[$out+28] add $out,32,$out ld [$inp+64*0],%l0 ld [$inp+64*1],%l1 ld [$inp+64*2],%l2 ld [$inp+64*3],%l3 ld [$inp+64*4],%l4 ld [$inp+64*5],%l5 ld [$inp+64*6],%l6 ld [$inp+64*7],%l7 and %l0,$mask,%l0 and %l1,$mask,%l1 st %l0,[$out] ! Z and %l2,$mask,%l2 st %l1,[$out+4] and %l3,$mask,%l3 st %l2,[$out+8] and %l4,$mask,%l4 st %l3,[$out+12] and %l5,$mask,%l5 st %l4,[$out+16] and %l6,$mask,%l6 st %l5,[$out+20] and %l7,$mask,%l7 st %l6,[$out+24] st %l7,[$out+28] ret restore .type ecp_nistz256_gather_w5,#function .size ecp_nistz256_gather_w5,.-ecp_nistz256_gather_w5 ! void ecp_nistz256_scatter_w7(void *%i0,const P256_POINT_AFFINE *%i1, ! int %i2); .globl ecp_nistz256_scatter_w7 .align 32 ecp_nistz256_scatter_w7: save %sp,-STACK_FRAME,%sp nop add $out,$index,$out mov 64/4,$index .Loop_scatter_w7: ld [$inp],%l0 add $inp,4,$inp subcc $index,1,$index stb %l0,[$out+64*0-1] srl %l0,8,%l1 stb %l1,[$out+64*1-1] srl %l0,16,%l2 stb %l2,[$out+64*2-1] srl %l0,24,%l3 stb %l3,[$out+64*3-1] bne .Loop_scatter_w7 add $out,64*4,$out ret restore .type ecp_nistz256_scatter_w7,#function .size ecp_nistz256_scatter_w7,.-ecp_nistz256_scatter_w7 ! void ecp_nistz256_gather_w7(P256_POINT_AFFINE *%i0,const void *%i1, ! int %i2); .globl ecp_nistz256_gather_w7 .align 32 ecp_nistz256_gather_w7: save %sp,-STACK_FRAME,%sp neg $index,$mask srax $mask,63,$mask add $index,$mask,$index add $inp,$index,$inp mov 64/4,$index .Loop_gather_w7: ldub [$inp+64*0],%l0 prefetch [$inp+3840+64*0],1 subcc $index,1,$index ldub [$inp+64*1],%l1 prefetch [$inp+3840+64*1],1 ldub [$inp+64*2],%l2 prefetch [$inp+3840+64*2],1 ldub [$inp+64*3],%l3 prefetch [$inp+3840+64*3],1 add $inp,64*4,$inp sll %l1,8,%l1 sll %l2,16,%l2 or %l0,%l1,%l0 sll %l3,24,%l3 or %l0,%l2,%l0 or %l0,%l3,%l0 and %l0,$mask,%l0 st %l0,[$out] bne .Loop_gather_w7 add $out,4,$out ret restore .type ecp_nistz256_gather_w7,#function .size ecp_nistz256_gather_w7,.-ecp_nistz256_gather_w7 ___ }}} {{{ ######################################################################## # Following subroutines are VIS3 counterparts of those above that # implement ones found in ecp_nistz256.c. Key difference is that they # use 128-bit muliplication and addition with 64-bit carry, and in order # to do that they perform conversion from uin32_t[8] to uint64_t[4] upon # entry and vice versa on return. # my ($rp,$ap,$bp)=map("%i$_",(0..2)); my ($t0,$t1,$t2,$t3,$a0,$a1,$a2,$a3)=map("%l$_",(0..7)); my ($acc0,$acc1,$acc2,$acc3,$acc4,$acc5)=map("%o$_",(0..5)); my ($bi,$poly1,$poly3,$minus1)=(map("%i$_",(3..5)),"%g1"); my ($rp_real,$ap_real)=("%g2","%g3"); my ($acc6,$acc7)=($bp,$bi); # used in squaring $code.=<<___; .align 32 __ecp_nistz256_mul_by_2_vis3: addcc $acc0,$acc0,$acc0 addxccc $acc1,$acc1,$acc1 addxccc $acc2,$acc2,$acc2 addxccc $acc3,$acc3,$acc3 b .Lreduce_by_sub_vis3 addxc %g0,%g0,$acc4 ! did it carry? .type __ecp_nistz256_mul_by_2_vis3,#function .size __ecp_nistz256_mul_by_2_vis3,.-__ecp_nistz256_mul_by_2_vis3 .align 32 __ecp_nistz256_add_vis3: ldx [$bp+0],$t0 ldx [$bp+8],$t1 ldx [$bp+16],$t2 ldx [$bp+24],$t3 __ecp_nistz256_add_noload_vis3: addcc $t0,$acc0,$acc0 addxccc $t1,$acc1,$acc1 addxccc $t2,$acc2,$acc2 addxccc $t3,$acc3,$acc3 addxc %g0,%g0,$acc4 ! did it carry? .Lreduce_by_sub_vis3: addcc $acc0,1,$t0 ! add -modulus, i.e. subtract addxccc $acc1,$poly1,$t1 addxccc $acc2,$minus1,$t2 addxccc $acc3,$poly3,$t3 addxc $acc4,$minus1,$acc4 movrz $acc4,$t0,$acc0 ! ret = borrow ? ret : ret-modulus movrz $acc4,$t1,$acc1 stx $acc0,[$rp] movrz $acc4,$t2,$acc2 stx $acc1,[$rp+8] movrz $acc4,$t3,$acc3 stx $acc2,[$rp+16] retl stx $acc3,[$rp+24] .type __ecp_nistz256_add_vis3,#function .size __ecp_nistz256_add_vis3,.-__ecp_nistz256_add_vis3 ! Trouble with subtraction is that there is no subtraction with 64-bit ! borrow, only with 32-bit one. For this reason we "decompose" 64-bit ! $acc0-$acc3 to 32-bit values and pick b[4] in 32-bit pieces. But ! recall that SPARC is big-endian, which is why you'll observe that ! b[4] is accessed as 4-0-12-8-20-16-28-24. And prior reduction we ! "collect" result back to 64-bit $acc0-$acc3. .align 32 __ecp_nistz256_sub_from_vis3: ld [$bp+4],$t0 ld [$bp+0],$t1 ld [$bp+12],$t2 ld [$bp+8],$t3 srlx $acc0,32,$acc4 not $poly1,$poly1 srlx $acc1,32,$acc5 subcc $acc0,$t0,$acc0 ld [$bp+20],$t0 subccc $acc4,$t1,$acc4 ld [$bp+16],$t1 subccc $acc1,$t2,$acc1 ld [$bp+28],$t2 and $acc0,$poly1,$acc0 subccc $acc5,$t3,$acc5 ld [$bp+24],$t3 sllx $acc4,32,$acc4 and $acc1,$poly1,$acc1 sllx $acc5,32,$acc5 or $acc0,$acc4,$acc0 srlx $acc2,32,$acc4 or $acc1,$acc5,$acc1 srlx $acc3,32,$acc5 subccc $acc2,$t0,$acc2 subccc $acc4,$t1,$acc4 subccc $acc3,$t2,$acc3 and $acc2,$poly1,$acc2 subccc $acc5,$t3,$acc5 sllx $acc4,32,$acc4 and $acc3,$poly1,$acc3 sllx $acc5,32,$acc5 or $acc2,$acc4,$acc2 subc %g0,%g0,$acc4 ! did it borrow? b .Lreduce_by_add_vis3 or $acc3,$acc5,$acc3 .type __ecp_nistz256_sub_from_vis3,#function .size __ecp_nistz256_sub_from_vis3,.-__ecp_nistz256_sub_from_vis3 .align 32 __ecp_nistz256_sub_morf_vis3: ld [$bp+4],$t0 ld [$bp+0],$t1 ld [$bp+12],$t2 ld [$bp+8],$t3 srlx $acc0,32,$acc4 not $poly1,$poly1 srlx $acc1,32,$acc5 subcc $t0,$acc0,$acc0 ld [$bp+20],$t0 subccc $t1,$acc4,$acc4 ld [$bp+16],$t1 subccc $t2,$acc1,$acc1 ld [$bp+28],$t2 and $acc0,$poly1,$acc0 subccc $t3,$acc5,$acc5 ld [$bp+24],$t3 sllx $acc4,32,$acc4 and $acc1,$poly1,$acc1 sllx $acc5,32,$acc5 or $acc0,$acc4,$acc0 srlx $acc2,32,$acc4 or $acc1,$acc5,$acc1 srlx $acc3,32,$acc5 subccc $t0,$acc2,$acc2 subccc $t1,$acc4,$acc4 subccc $t2,$acc3,$acc3 and $acc2,$poly1,$acc2 subccc $t3,$acc5,$acc5 sllx $acc4,32,$acc4 and $acc3,$poly1,$acc3 sllx $acc5,32,$acc5 or $acc2,$acc4,$acc2 subc %g0,%g0,$acc4 ! did it borrow? or $acc3,$acc5,$acc3 .Lreduce_by_add_vis3: addcc $acc0,-1,$t0 ! add modulus not $poly3,$t3 addxccc $acc1,$poly1,$t1 not $poly1,$poly1 ! restore $poly1 addxccc $acc2,%g0,$t2 addxc $acc3,$t3,$t3 movrnz $acc4,$t0,$acc0 ! if a-b borrowed, ret = ret+mod movrnz $acc4,$t1,$acc1 stx $acc0,[$rp] movrnz $acc4,$t2,$acc2 stx $acc1,[$rp+8] movrnz $acc4,$t3,$acc3 stx $acc2,[$rp+16] retl stx $acc3,[$rp+24] .type __ecp_nistz256_sub_morf_vis3,#function .size __ecp_nistz256_sub_morf_vis3,.-__ecp_nistz256_sub_morf_vis3 .align 32 __ecp_nistz256_div_by_2_vis3: ! ret = (a is odd ? a+mod : a) >> 1 not $poly1,$t1 not $poly3,$t3 and $acc0,1,$acc5 addcc $acc0,-1,$t0 ! add modulus addxccc $acc1,$t1,$t1 addxccc $acc2,%g0,$t2 addxccc $acc3,$t3,$t3 addxc %g0,%g0,$acc4 ! carry bit movrnz $acc5,$t0,$acc0 movrnz $acc5,$t1,$acc1 movrnz $acc5,$t2,$acc2 movrnz $acc5,$t3,$acc3 movrz $acc5,%g0,$acc4 ! ret >>= 1 srlx $acc0,1,$acc0 sllx $acc1,63,$t0 srlx $acc1,1,$acc1 or $acc0,$t0,$acc0 sllx $acc2,63,$t1 srlx $acc2,1,$acc2 or $acc1,$t1,$acc1 sllx $acc3,63,$t2 stx $acc0,[$rp] srlx $acc3,1,$acc3 or $acc2,$t2,$acc2 sllx $acc4,63,$t3 ! don't forget carry bit stx $acc1,[$rp+8] or $acc3,$t3,$acc3 stx $acc2,[$rp+16] retl stx $acc3,[$rp+24] .type __ecp_nistz256_div_by_2_vis3,#function .size __ecp_nistz256_div_by_2_vis3,.-__ecp_nistz256_div_by_2_vis3 ! compared to __ecp_nistz256_mul_mont it's almost 4x smaller and ! 4x faster [on T4]... .align 32 __ecp_nistz256_mul_mont_vis3: mulx $a0,$bi,$acc0 not $poly3,$poly3 ! 0xFFFFFFFF00000001 umulxhi $a0,$bi,$t0 mulx $a1,$bi,$acc1 umulxhi $a1,$bi,$t1 mulx $a2,$bi,$acc2 umulxhi $a2,$bi,$t2 mulx $a3,$bi,$acc3 umulxhi $a3,$bi,$t3 ldx [$bp+8],$bi ! b[1] addcc $acc1,$t0,$acc1 ! accumulate high parts of multiplication sllx $acc0,32,$t0 addxccc $acc2,$t1,$acc2 srlx $acc0,32,$t1 addxccc $acc3,$t2,$acc3 addxc %g0,$t3,$acc4 mov 0,$acc5 ___ for($i=1;$i<4;$i++) { # Reduction iteration is normally performed by accumulating # result of multiplication of modulus by "magic" digit [and # omitting least significant word, which is guaranteed to # be 0], but thanks to special form of modulus and "magic" # digit being equal to least significant word, it can be # performed with additions and subtractions alone. Indeed: # # ffff0001.00000000.0000ffff.ffffffff # * abcdefgh # + xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx.abcdefgh # # Now observing that ff..ff*x = (2^n-1)*x = 2^n*x-x, we # rewrite above as: # # xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx.abcdefgh # + abcdefgh.abcdefgh.0000abcd.efgh0000.00000000 # - 0000abcd.efgh0000.00000000.00000000.abcdefgh # # or marking redundant operations: # # xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx.-------- # + abcdefgh.abcdefgh.0000abcd.efgh0000.-------- # - 0000abcd.efgh0000.--------.--------.-------- # ^^^^^^^^ but this word is calculated with umulxhi, because # there is no subtract with 64-bit borrow:-( $code.=<<___; sub $acc0,$t0,$t2 ! acc0*0xFFFFFFFF00000001, low part umulxhi $acc0,$poly3,$t3 ! acc0*0xFFFFFFFF00000001, high part addcc $acc1,$t0,$acc0 ! +=acc[0]<<96 and omit acc[0] mulx $a0,$bi,$t0 addxccc $acc2,$t1,$acc1 mulx $a1,$bi,$t1 addxccc $acc3,$t2,$acc2 ! +=acc[0]*0xFFFFFFFF00000001 mulx $a2,$bi,$t2 addxccc $acc4,$t3,$acc3 mulx $a3,$bi,$t3 addxc $acc5,%g0,$acc4 addcc $acc0,$t0,$acc0 ! accumulate low parts of multiplication umulxhi $a0,$bi,$t0 addxccc $acc1,$t1,$acc1 umulxhi $a1,$bi,$t1 addxccc $acc2,$t2,$acc2 umulxhi $a2,$bi,$t2 addxccc $acc3,$t3,$acc3 umulxhi $a3,$bi,$t3 addxc $acc4,%g0,$acc4 ___ $code.=<<___ if ($i<3); ldx [$bp+8*($i+1)],$bi ! bp[$i+1] ___ $code.=<<___; addcc $acc1,$t0,$acc1 ! accumulate high parts of multiplication sllx $acc0,32,$t0 addxccc $acc2,$t1,$acc2 srlx $acc0,32,$t1 addxccc $acc3,$t2,$acc3 addxccc $acc4,$t3,$acc4 addxc %g0,%g0,$acc5 ___ } $code.=<<___; sub $acc0,$t0,$t2 ! acc0*0xFFFFFFFF00000001, low part umulxhi $acc0,$poly3,$t3 ! acc0*0xFFFFFFFF00000001, high part addcc $acc1,$t0,$acc0 ! +=acc[0]<<96 and omit acc[0] addxccc $acc2,$t1,$acc1 addxccc $acc3,$t2,$acc2 ! +=acc[0]*0xFFFFFFFF00000001 addxccc $acc4,$t3,$acc3 b .Lmul_final_vis3 ! see below addxc $acc5,%g0,$acc4 .type __ecp_nistz256_mul_mont_vis3,#function .size __ecp_nistz256_mul_mont_vis3,.-__ecp_nistz256_mul_mont_vis3 ! compared to above __ecp_nistz256_mul_mont_vis3 it's 21% less ! instructions, but only 14% faster [on T4]... .align 32 __ecp_nistz256_sqr_mont_vis3: ! | | | | | |a1*a0| | ! | | | | |a2*a0| | | ! | |a3*a2|a3*a0| | | | ! | | | |a2*a1| | | | ! | | |a3*a1| | | | | ! *| | | | | | | | 2| ! +|a3*a3|a2*a2|a1*a1|a0*a0| ! |--+--+--+--+--+--+--+--| ! |A7|A6|A5|A4|A3|A2|A1|A0|, where Ax is $accx, i.e. follow $accx ! ! "can't overflow" below mark carrying into high part of ! multiplication result, which can't overflow, because it ! can never be all ones. mulx $a1,$a0,$acc1 ! a[1]*a[0] umulxhi $a1,$a0,$t1 mulx $a2,$a0,$acc2 ! a[2]*a[0] umulxhi $a2,$a0,$t2 mulx $a3,$a0,$acc3 ! a[3]*a[0] umulxhi $a3,$a0,$acc4 addcc $acc2,$t1,$acc2 ! accumulate high parts of multiplication mulx $a2,$a1,$t0 ! a[2]*a[1] umulxhi $a2,$a1,$t1 addxccc $acc3,$t2,$acc3 mulx $a3,$a1,$t2 ! a[3]*a[1] umulxhi $a3,$a1,$t3 addxc $acc4,%g0,$acc4 ! can't overflow mulx $a3,$a2,$acc5 ! a[3]*a[2] not $poly3,$poly3 ! 0xFFFFFFFF00000001 umulxhi $a3,$a2,$acc6 addcc $t2,$t1,$t1 ! accumulate high parts of multiplication mulx $a0,$a0,$acc0 ! a[0]*a[0] addxc $t3,%g0,$t2 ! can't overflow addcc $acc3,$t0,$acc3 ! accumulate low parts of multiplication umulxhi $a0,$a0,$a0 addxccc $acc4,$t1,$acc4 mulx $a1,$a1,$t1 ! a[1]*a[1] addxccc $acc5,$t2,$acc5 umulxhi $a1,$a1,$a1 addxc $acc6,%g0,$acc6 ! can't overflow addcc $acc1,$acc1,$acc1 ! acc[1-6]*=2 mulx $a2,$a2,$t2 ! a[2]*a[2] addxccc $acc2,$acc2,$acc2 umulxhi $a2,$a2,$a2 addxccc $acc3,$acc3,$acc3 mulx $a3,$a3,$t3 ! a[3]*a[3] addxccc $acc4,$acc4,$acc4 umulxhi $a3,$a3,$a3 addxccc $acc5,$acc5,$acc5 addxccc $acc6,$acc6,$acc6 addxc %g0,%g0,$acc7 addcc $acc1,$a0,$acc1 ! +a[i]*a[i] addxccc $acc2,$t1,$acc2 addxccc $acc3,$a1,$acc3 addxccc $acc4,$t2,$acc4 sllx $acc0,32,$t0 addxccc $acc5,$a2,$acc5 srlx $acc0,32,$t1 addxccc $acc6,$t3,$acc6 sub $acc0,$t0,$t2 ! acc0*0xFFFFFFFF00000001, low part addxc $acc7,$a3,$acc7 ___ for($i=0;$i<3;$i++) { # reductions, see commentary # in multiplication for details $code.=<<___; umulxhi $acc0,$poly3,$t3 ! acc0*0xFFFFFFFF00000001, high part addcc $acc1,$t0,$acc0 ! +=acc[0]<<96 and omit acc[0] sllx $acc0,32,$t0 addxccc $acc2,$t1,$acc1 srlx $acc0,32,$t1 addxccc $acc3,$t2,$acc2 ! +=acc[0]*0xFFFFFFFF00000001 sub $acc0,$t0,$t2 ! acc0*0xFFFFFFFF00000001, low part addxc %g0,$t3,$acc3 ! cant't overflow ___ } $code.=<<___; umulxhi $acc0,$poly3,$t3 ! acc0*0xFFFFFFFF00000001, high part addcc $acc1,$t0,$acc0 ! +=acc[0]<<96 and omit acc[0] addxccc $acc2,$t1,$acc1 addxccc $acc3,$t2,$acc2 ! +=acc[0]*0xFFFFFFFF00000001 addxc %g0,$t3,$acc3 ! can't overflow addcc $acc0,$acc4,$acc0 ! accumulate upper half addxccc $acc1,$acc5,$acc1 addxccc $acc2,$acc6,$acc2 addxccc $acc3,$acc7,$acc3 addxc %g0,%g0,$acc4 .Lmul_final_vis3: ! Final step is "if result > mod, subtract mod", but as comparison ! means subtraction, we do the subtraction and then copy outcome ! if it didn't borrow. But note that as we [have to] replace ! subtraction with addition with negative, carry/borrow logic is ! inverse. addcc $acc0,1,$t0 ! add -modulus, i.e. subtract not $poly3,$poly3 ! restore 0x00000000FFFFFFFE addxccc $acc1,$poly1,$t1 addxccc $acc2,$minus1,$t2 addxccc $acc3,$poly3,$t3 addxccc $acc4,$minus1,%g0 ! did it carry? movcs %xcc,$t0,$acc0 movcs %xcc,$t1,$acc1 stx $acc0,[$rp] movcs %xcc,$t2,$acc2 stx $acc1,[$rp+8] movcs %xcc,$t3,$acc3 stx $acc2,[$rp+16] retl stx $acc3,[$rp+24] .type __ecp_nistz256_sqr_mont_vis3,#function .size __ecp_nistz256_sqr_mont_vis3,.-__ecp_nistz256_sqr_mont_vis3 ___ ######################################################################## # void ecp_nistz256_point_double(P256_POINT *out,const P256_POINT *inp); # { my ($res_x,$res_y,$res_z, $in_x,$in_y,$in_z, $S,$M,$Zsqr,$tmp0)=map(32*$_,(0..9)); # above map() describes stack layout with 10 temporary # 256-bit vectors on top. $code.=<<___; .align 32 ecp_nistz256_point_double_vis3: save %sp,-STACK64_FRAME-32*10,%sp mov $rp,$rp_real .Ldouble_shortcut_vis3: mov -1,$minus1 mov -2,$poly3 sllx $minus1,32,$poly1 ! 0xFFFFFFFF00000000 srl $poly3,0,$poly3 ! 0x00000000FFFFFFFE ! convert input to uint64_t[4] ld [$ap],$a0 ! in_x ld [$ap+4],$t0 ld [$ap+8],$a1 ld [$ap+12],$t1 ld [$ap+16],$a2 ld [$ap+20],$t2 ld [$ap+24],$a3 ld [$ap+28],$t3 sllx $t0,32,$t0 sllx $t1,32,$t1 ld [$ap+32],$acc0 ! in_y or $a0,$t0,$a0 ld [$ap+32+4],$t0 sllx $t2,32,$t2 ld [$ap+32+8],$acc1 or $a1,$t1,$a1 ld [$ap+32+12],$t1 sllx $t3,32,$t3 ld [$ap+32+16],$acc2 or $a2,$t2,$a2 ld [$ap+32+20],$t2 or $a3,$t3,$a3 ld [$ap+32+24],$acc3 sllx $t0,32,$t0 ld [$ap+32+28],$t3 sllx $t1,32,$t1 stx $a0,[%sp+LOCALS64+$in_x] sllx $t2,32,$t2 stx $a1,[%sp+LOCALS64+$in_x+8] sllx $t3,32,$t3 stx $a2,[%sp+LOCALS64+$in_x+16] or $acc0,$t0,$acc0 stx $a3,[%sp+LOCALS64+$in_x+24] or $acc1,$t1,$acc1 stx $acc0,[%sp+LOCALS64+$in_y] or $acc2,$t2,$acc2 stx $acc1,[%sp+LOCALS64+$in_y+8] or $acc3,$t3,$acc3 stx $acc2,[%sp+LOCALS64+$in_y+16] stx $acc3,[%sp+LOCALS64+$in_y+24] ld [$ap+64],$a0 ! in_z ld [$ap+64+4],$t0 ld [$ap+64+8],$a1 ld [$ap+64+12],$t1 ld [$ap+64+16],$a2 ld [$ap+64+20],$t2 ld [$ap+64+24],$a3 ld [$ap+64+28],$t3 sllx $t0,32,$t0 sllx $t1,32,$t1 or $a0,$t0,$a0 sllx $t2,32,$t2 or $a1,$t1,$a1 sllx $t3,32,$t3 or $a2,$t2,$a2 or $a3,$t3,$a3 sllx $t0,32,$t0 sllx $t1,32,$t1 stx $a0,[%sp+LOCALS64+$in_z] sllx $t2,32,$t2 stx $a1,[%sp+LOCALS64+$in_z+8] sllx $t3,32,$t3 stx $a2,[%sp+LOCALS64+$in_z+16] stx $a3,[%sp+LOCALS64+$in_z+24] ! in_y is still in $acc0-$acc3 call __ecp_nistz256_mul_by_2_vis3 ! p256_mul_by_2(S, in_y); add %sp,LOCALS64+$S,$rp ! in_z is still in $a0-$a3 call __ecp_nistz256_sqr_mont_vis3 ! p256_sqr_mont(Zsqr, in_z); add %sp,LOCALS64+$Zsqr,$rp mov $acc0,$a0 ! put Zsqr aside mov $acc1,$a1 mov $acc2,$a2 mov $acc3,$a3 add %sp,LOCALS64+$in_x,$bp call __ecp_nistz256_add_vis3 ! p256_add(M, Zsqr, in_x); add %sp,LOCALS64+$M,$rp mov $a0,$acc0 ! restore Zsqr ldx [%sp+LOCALS64+$S],$a0 ! forward load mov $a1,$acc1 ldx [%sp+LOCALS64+$S+8],$a1 mov $a2,$acc2 ldx [%sp+LOCALS64+$S+16],$a2 mov $a3,$acc3 ldx [%sp+LOCALS64+$S+24],$a3 add %sp,LOCALS64+$in_x,$bp call __ecp_nistz256_sub_morf_vis3 ! p256_sub(Zsqr, in_x, Zsqr); add %sp,LOCALS64+$Zsqr,$rp call __ecp_nistz256_sqr_mont_vis3 ! p256_sqr_mont(S, S); add %sp,LOCALS64+$S,$rp ldx [%sp+LOCALS64+$in_z],$bi ldx [%sp+LOCALS64+$in_y],$a0 ldx [%sp+LOCALS64+$in_y+8],$a1 ldx [%sp+LOCALS64+$in_y+16],$a2 ldx [%sp+LOCALS64+$in_y+24],$a3 add %sp,LOCALS64+$in_z,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(tmp0, in_z, in_y); add %sp,LOCALS64+$tmp0,$rp ldx [%sp+LOCALS64+$M],$bi ! forward load ldx [%sp+LOCALS64+$Zsqr],$a0 ldx [%sp+LOCALS64+$Zsqr+8],$a1 ldx [%sp+LOCALS64+$Zsqr+16],$a2 ldx [%sp+LOCALS64+$Zsqr+24],$a3 call __ecp_nistz256_mul_by_2_vis3 ! p256_mul_by_2(res_z, tmp0); add %sp,LOCALS64+$res_z,$rp add %sp,LOCALS64+$M,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(M, M, Zsqr); add %sp,LOCALS64+$M,$rp mov $acc0,$a0 ! put aside M mov $acc1,$a1 mov $acc2,$a2 mov $acc3,$a3 call __ecp_nistz256_mul_by_2_vis3 add %sp,LOCALS64+$M,$rp mov $a0,$t0 ! copy M ldx [%sp+LOCALS64+$S],$a0 ! forward load mov $a1,$t1 ldx [%sp+LOCALS64+$S+8],$a1 mov $a2,$t2 ldx [%sp+LOCALS64+$S+16],$a2 mov $a3,$t3 ldx [%sp+LOCALS64+$S+24],$a3 call __ecp_nistz256_add_noload_vis3 ! p256_mul_by_3(M, M); add %sp,LOCALS64+$M,$rp call __ecp_nistz256_sqr_mont_vis3 ! p256_sqr_mont(tmp0, S); add %sp,LOCALS64+$tmp0,$rp ldx [%sp+LOCALS64+$S],$bi ! forward load ldx [%sp+LOCALS64+$in_x],$a0 ldx [%sp+LOCALS64+$in_x+8],$a1 ldx [%sp+LOCALS64+$in_x+16],$a2 ldx [%sp+LOCALS64+$in_x+24],$a3 call __ecp_nistz256_div_by_2_vis3 ! p256_div_by_2(res_y, tmp0); add %sp,LOCALS64+$res_y,$rp add %sp,LOCALS64+$S,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(S, S, in_x); add %sp,LOCALS64+$S,$rp ldx [%sp+LOCALS64+$M],$a0 ! forward load ldx [%sp+LOCALS64+$M+8],$a1 ldx [%sp+LOCALS64+$M+16],$a2 ldx [%sp+LOCALS64+$M+24],$a3 call __ecp_nistz256_mul_by_2_vis3 ! p256_mul_by_2(tmp0, S); add %sp,LOCALS64+$tmp0,$rp call __ecp_nistz256_sqr_mont_vis3 ! p256_sqr_mont(res_x, M); add %sp,LOCALS64+$res_x,$rp add %sp,LOCALS64+$tmp0,$bp call __ecp_nistz256_sub_from_vis3 ! p256_sub(res_x, res_x, tmp0); add %sp,LOCALS64+$res_x,$rp ldx [%sp+LOCALS64+$M],$a0 ! forward load ldx [%sp+LOCALS64+$M+8],$a1 ldx [%sp+LOCALS64+$M+16],$a2 ldx [%sp+LOCALS64+$M+24],$a3 add %sp,LOCALS64+$S,$bp call __ecp_nistz256_sub_morf_vis3 ! p256_sub(S, S, res_x); add %sp,LOCALS64+$S,$rp mov $acc0,$bi call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(S, S, M); add %sp,LOCALS64+$S,$rp ldx [%sp+LOCALS64+$res_x],$a0 ! forward load ldx [%sp+LOCALS64+$res_x+8],$a1 ldx [%sp+LOCALS64+$res_x+16],$a2 ldx [%sp+LOCALS64+$res_x+24],$a3 add %sp,LOCALS64+$res_y,$bp call __ecp_nistz256_sub_from_vis3 ! p256_sub(res_y, S, res_y); add %sp,LOCALS64+$res_y,$bp ! convert output to uint_32[8] srlx $a0,32,$t0 srlx $a1,32,$t1 st $a0,[$rp_real] ! res_x srlx $a2,32,$t2 st $t0,[$rp_real+4] srlx $a3,32,$t3 st $a1,[$rp_real+8] st $t1,[$rp_real+12] st $a2,[$rp_real+16] st $t2,[$rp_real+20] st $a3,[$rp_real+24] st $t3,[$rp_real+28] ldx [%sp+LOCALS64+$res_z],$a0 ! forward load srlx $acc0,32,$t0 ldx [%sp+LOCALS64+$res_z+8],$a1 srlx $acc1,32,$t1 ldx [%sp+LOCALS64+$res_z+16],$a2 srlx $acc2,32,$t2 ldx [%sp+LOCALS64+$res_z+24],$a3 srlx $acc3,32,$t3 st $acc0,[$rp_real+32] ! res_y st $t0, [$rp_real+32+4] st $acc1,[$rp_real+32+8] st $t1, [$rp_real+32+12] st $acc2,[$rp_real+32+16] st $t2, [$rp_real+32+20] st $acc3,[$rp_real+32+24] st $t3, [$rp_real+32+28] srlx $a0,32,$t0 srlx $a1,32,$t1 st $a0,[$rp_real+64] ! res_z srlx $a2,32,$t2 st $t0,[$rp_real+64+4] srlx $a3,32,$t3 st $a1,[$rp_real+64+8] st $t1,[$rp_real+64+12] st $a2,[$rp_real+64+16] st $t2,[$rp_real+64+20] st $a3,[$rp_real+64+24] st $t3,[$rp_real+64+28] ret restore .type ecp_nistz256_point_double_vis3,#function .size ecp_nistz256_point_double_vis3,.-ecp_nistz256_point_double_vis3 ___ } ######################################################################## # void ecp_nistz256_point_add(P256_POINT *out,const P256_POINT *in1, # const P256_POINT *in2); { my ($res_x,$res_y,$res_z, $in1_x,$in1_y,$in1_z, $in2_x,$in2_y,$in2_z, $H,$Hsqr,$R,$Rsqr,$Hcub, $U1,$U2,$S1,$S2)=map(32*$_,(0..17)); my ($Z1sqr, $Z2sqr) = ($Hsqr, $Rsqr); # above map() describes stack layout with 18 temporary # 256-bit vectors on top. Then we reserve some space for # !in1infty, !in2infty and result of check for zero. $code.=<<___; .globl ecp_nistz256_point_add_vis3 .align 32 ecp_nistz256_point_add_vis3: save %sp,-STACK64_FRAME-32*18-32,%sp mov $rp,$rp_real mov -1,$minus1 mov -2,$poly3 sllx $minus1,32,$poly1 ! 0xFFFFFFFF00000000 srl $poly3,0,$poly3 ! 0x00000000FFFFFFFE ! convert input to uint64_t[4] ld [$bp],$a0 ! in2_x ld [$bp+4],$t0 ld [$bp+8],$a1 ld [$bp+12],$t1 ld [$bp+16],$a2 ld [$bp+20],$t2 ld [$bp+24],$a3 ld [$bp+28],$t3 sllx $t0,32,$t0 sllx $t1,32,$t1 ld [$bp+32],$acc0 ! in2_y or $a0,$t0,$a0 ld [$bp+32+4],$t0 sllx $t2,32,$t2 ld [$bp+32+8],$acc1 or $a1,$t1,$a1 ld [$bp+32+12],$t1 sllx $t3,32,$t3 ld [$bp+32+16],$acc2 or $a2,$t2,$a2 ld [$bp+32+20],$t2 or $a3,$t3,$a3 ld [$bp+32+24],$acc3 sllx $t0,32,$t0 ld [$bp+32+28],$t3 sllx $t1,32,$t1 stx $a0,[%sp+LOCALS64+$in2_x] sllx $t2,32,$t2 stx $a1,[%sp+LOCALS64+$in2_x+8] sllx $t3,32,$t3 stx $a2,[%sp+LOCALS64+$in2_x+16] or $acc0,$t0,$acc0 stx $a3,[%sp+LOCALS64+$in2_x+24] or $acc1,$t1,$acc1 stx $acc0,[%sp+LOCALS64+$in2_y] or $acc2,$t2,$acc2 stx $acc1,[%sp+LOCALS64+$in2_y+8] or $acc3,$t3,$acc3 stx $acc2,[%sp+LOCALS64+$in2_y+16] stx $acc3,[%sp+LOCALS64+$in2_y+24] ld [$bp+64],$acc0 ! in2_z ld [$bp+64+4],$t0 ld [$bp+64+8],$acc1 ld [$bp+64+12],$t1 ld [$bp+64+16],$acc2 ld [$bp+64+20],$t2 ld [$bp+64+24],$acc3 ld [$bp+64+28],$t3 sllx $t0,32,$t0 sllx $t1,32,$t1 ld [$ap],$a0 ! in1_x or $acc0,$t0,$acc0 ld [$ap+4],$t0 sllx $t2,32,$t2 ld [$ap+8],$a1 or $acc1,$t1,$acc1 ld [$ap+12],$t1 sllx $t3,32,$t3 ld [$ap+16],$a2 or $acc2,$t2,$acc2 ld [$ap+20],$t2 or $acc3,$t3,$acc3 ld [$ap+24],$a3 sllx $t0,32,$t0 ld [$ap+28],$t3 sllx $t1,32,$t1 stx $acc0,[%sp+LOCALS64+$in2_z] sllx $t2,32,$t2 stx $acc1,[%sp+LOCALS64+$in2_z+8] sllx $t3,32,$t3 stx $acc2,[%sp+LOCALS64+$in2_z+16] stx $acc3,[%sp+LOCALS64+$in2_z+24] or $acc1,$acc0,$acc0 or $acc3,$acc2,$acc2 or $acc2,$acc0,$acc0 movrnz $acc0,-1,$acc0 ! !in2infty stx $acc0,[%fp+STACK_BIAS-8] or $a0,$t0,$a0 ld [$ap+32],$acc0 ! in1_y or $a1,$t1,$a1 ld [$ap+32+4],$t0 or $a2,$t2,$a2 ld [$ap+32+8],$acc1 or $a3,$t3,$a3 ld [$ap+32+12],$t1 ld [$ap+32+16],$acc2 ld [$ap+32+20],$t2 ld [$ap+32+24],$acc3 sllx $t0,32,$t0 ld [$ap+32+28],$t3 sllx $t1,32,$t1 stx $a0,[%sp+LOCALS64+$in1_x] sllx $t2,32,$t2 stx $a1,[%sp+LOCALS64+$in1_x+8] sllx $t3,32,$t3 stx $a2,[%sp+LOCALS64+$in1_x+16] or $acc0,$t0,$acc0 stx $a3,[%sp+LOCALS64+$in1_x+24] or $acc1,$t1,$acc1 stx $acc0,[%sp+LOCALS64+$in1_y] or $acc2,$t2,$acc2 stx $acc1,[%sp+LOCALS64+$in1_y+8] or $acc3,$t3,$acc3 stx $acc2,[%sp+LOCALS64+$in1_y+16] stx $acc3,[%sp+LOCALS64+$in1_y+24] ldx [%sp+LOCALS64+$in2_z],$a0 ! forward load ldx [%sp+LOCALS64+$in2_z+8],$a1 ldx [%sp+LOCALS64+$in2_z+16],$a2 ldx [%sp+LOCALS64+$in2_z+24],$a3 ld [$ap+64],$acc0 ! in1_z ld [$ap+64+4],$t0 ld [$ap+64+8],$acc1 ld [$ap+64+12],$t1 ld [$ap+64+16],$acc2 ld [$ap+64+20],$t2 ld [$ap+64+24],$acc3 ld [$ap+64+28],$t3 sllx $t0,32,$t0 sllx $t1,32,$t1 or $acc0,$t0,$acc0 sllx $t2,32,$t2 or $acc1,$t1,$acc1 sllx $t3,32,$t3 stx $acc0,[%sp+LOCALS64+$in1_z] or $acc2,$t2,$acc2 stx $acc1,[%sp+LOCALS64+$in1_z+8] or $acc3,$t3,$acc3 stx $acc2,[%sp+LOCALS64+$in1_z+16] stx $acc3,[%sp+LOCALS64+$in1_z+24] or $acc1,$acc0,$acc0 or $acc3,$acc2,$acc2 or $acc2,$acc0,$acc0 movrnz $acc0,-1,$acc0 ! !in1infty stx $acc0,[%fp+STACK_BIAS-16] call __ecp_nistz256_sqr_mont_vis3 ! p256_sqr_mont(Z2sqr, in2_z); add %sp,LOCALS64+$Z2sqr,$rp ldx [%sp+LOCALS64+$in1_z],$a0 ldx [%sp+LOCALS64+$in1_z+8],$a1 ldx [%sp+LOCALS64+$in1_z+16],$a2 ldx [%sp+LOCALS64+$in1_z+24],$a3 call __ecp_nistz256_sqr_mont_vis3 ! p256_sqr_mont(Z1sqr, in1_z); add %sp,LOCALS64+$Z1sqr,$rp ldx [%sp+LOCALS64+$Z2sqr],$bi ldx [%sp+LOCALS64+$in2_z],$a0 ldx [%sp+LOCALS64+$in2_z+8],$a1 ldx [%sp+LOCALS64+$in2_z+16],$a2 ldx [%sp+LOCALS64+$in2_z+24],$a3 add %sp,LOCALS64+$Z2sqr,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(S1, Z2sqr, in2_z); add %sp,LOCALS64+$S1,$rp ldx [%sp+LOCALS64+$Z1sqr],$bi ldx [%sp+LOCALS64+$in1_z],$a0 ldx [%sp+LOCALS64+$in1_z+8],$a1 ldx [%sp+LOCALS64+$in1_z+16],$a2 ldx [%sp+LOCALS64+$in1_z+24],$a3 add %sp,LOCALS64+$Z1sqr,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(S2, Z1sqr, in1_z); add %sp,LOCALS64+$S2,$rp ldx [%sp+LOCALS64+$S1],$bi ldx [%sp+LOCALS64+$in1_y],$a0 ldx [%sp+LOCALS64+$in1_y+8],$a1 ldx [%sp+LOCALS64+$in1_y+16],$a2 ldx [%sp+LOCALS64+$in1_y+24],$a3 add %sp,LOCALS64+$S1,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(S1, S1, in1_y); add %sp,LOCALS64+$S1,$rp ldx [%sp+LOCALS64+$S2],$bi ldx [%sp+LOCALS64+$in2_y],$a0 ldx [%sp+LOCALS64+$in2_y+8],$a1 ldx [%sp+LOCALS64+$in2_y+16],$a2 ldx [%sp+LOCALS64+$in2_y+24],$a3 add %sp,LOCALS64+$S2,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(S2, S2, in2_y); add %sp,LOCALS64+$S2,$rp ldx [%sp+LOCALS64+$Z2sqr],$bi ! forward load ldx [%sp+LOCALS64+$in1_x],$a0 ldx [%sp+LOCALS64+$in1_x+8],$a1 ldx [%sp+LOCALS64+$in1_x+16],$a2 ldx [%sp+LOCALS64+$in1_x+24],$a3 add %sp,LOCALS64+$S1,$bp call __ecp_nistz256_sub_from_vis3 ! p256_sub(R, S2, S1); add %sp,LOCALS64+$R,$rp or $acc1,$acc0,$acc0 ! see if result is zero or $acc3,$acc2,$acc2 or $acc2,$acc0,$acc0 stx $acc0,[%fp+STACK_BIAS-24] add %sp,LOCALS64+$Z2sqr,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(U1, in1_x, Z2sqr); add %sp,LOCALS64+$U1,$rp ldx [%sp+LOCALS64+$Z1sqr],$bi ldx [%sp+LOCALS64+$in2_x],$a0 ldx [%sp+LOCALS64+$in2_x+8],$a1 ldx [%sp+LOCALS64+$in2_x+16],$a2 ldx [%sp+LOCALS64+$in2_x+24],$a3 add %sp,LOCALS64+$Z1sqr,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(U2, in2_x, Z1sqr); add %sp,LOCALS64+$U2,$rp ldx [%sp+LOCALS64+$R],$a0 ! forward load ldx [%sp+LOCALS64+$R+8],$a1 ldx [%sp+LOCALS64+$R+16],$a2 ldx [%sp+LOCALS64+$R+24],$a3 add %sp,LOCALS64+$U1,$bp call __ecp_nistz256_sub_from_vis3 ! p256_sub(H, U2, U1); add %sp,LOCALS64+$H,$rp or $acc1,$acc0,$acc0 ! see if result is zero or $acc3,$acc2,$acc2 orcc $acc2,$acc0,$acc0 bne,pt %xcc,.Ladd_proceed_vis3 ! is_equal(U1,U2)? nop ldx [%fp+STACK_BIAS-8],$t0 ldx [%fp+STACK_BIAS-16],$t1 ldx [%fp+STACK_BIAS-24],$t2 andcc $t0,$t1,%g0 be,pt %xcc,.Ladd_proceed_vis3 ! (in1infty || in2infty)? nop andcc $t2,$t2,%g0 be,a,pt %xcc,.Ldouble_shortcut_vis3 ! is_equal(S1,S2)? add %sp,32*(12-10)+32,%sp ! difference in frame sizes st %g0,[$rp_real] st %g0,[$rp_real+4] st %g0,[$rp_real+8] st %g0,[$rp_real+12] st %g0,[$rp_real+16] st %g0,[$rp_real+20] st %g0,[$rp_real+24] st %g0,[$rp_real+28] st %g0,[$rp_real+32] st %g0,[$rp_real+32+4] st %g0,[$rp_real+32+8] st %g0,[$rp_real+32+12] st %g0,[$rp_real+32+16] st %g0,[$rp_real+32+20] st %g0,[$rp_real+32+24] st %g0,[$rp_real+32+28] st %g0,[$rp_real+64] st %g0,[$rp_real+64+4] st %g0,[$rp_real+64+8] st %g0,[$rp_real+64+12] st %g0,[$rp_real+64+16] st %g0,[$rp_real+64+20] st %g0,[$rp_real+64+24] st %g0,[$rp_real+64+28] b .Ladd_done_vis3 nop .align 16 .Ladd_proceed_vis3: call __ecp_nistz256_sqr_mont_vis3 ! p256_sqr_mont(Rsqr, R); add %sp,LOCALS64+$Rsqr,$rp ldx [%sp+LOCALS64+$H],$bi ldx [%sp+LOCALS64+$in1_z],$a0 ldx [%sp+LOCALS64+$in1_z+8],$a1 ldx [%sp+LOCALS64+$in1_z+16],$a2 ldx [%sp+LOCALS64+$in1_z+24],$a3 add %sp,LOCALS64+$H,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(res_z, H, in1_z); add %sp,LOCALS64+$res_z,$rp ldx [%sp+LOCALS64+$H],$a0 ldx [%sp+LOCALS64+$H+8],$a1 ldx [%sp+LOCALS64+$H+16],$a2 ldx [%sp+LOCALS64+$H+24],$a3 call __ecp_nistz256_sqr_mont_vis3 ! p256_sqr_mont(Hsqr, H); add %sp,LOCALS64+$Hsqr,$rp ldx [%sp+LOCALS64+$res_z],$bi ldx [%sp+LOCALS64+$in2_z],$a0 ldx [%sp+LOCALS64+$in2_z+8],$a1 ldx [%sp+LOCALS64+$in2_z+16],$a2 ldx [%sp+LOCALS64+$in2_z+24],$a3 add %sp,LOCALS64+$res_z,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(res_z, res_z, in2_z); add %sp,LOCALS64+$res_z,$rp ldx [%sp+LOCALS64+$H],$bi ldx [%sp+LOCALS64+$Hsqr],$a0 ldx [%sp+LOCALS64+$Hsqr+8],$a1 ldx [%sp+LOCALS64+$Hsqr+16],$a2 ldx [%sp+LOCALS64+$Hsqr+24],$a3 add %sp,LOCALS64+$H,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(Hcub, Hsqr, H); add %sp,LOCALS64+$Hcub,$rp ldx [%sp+LOCALS64+$U1],$bi ldx [%sp+LOCALS64+$Hsqr],$a0 ldx [%sp+LOCALS64+$Hsqr+8],$a1 ldx [%sp+LOCALS64+$Hsqr+16],$a2 ldx [%sp+LOCALS64+$Hsqr+24],$a3 add %sp,LOCALS64+$U1,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(U2, U1, Hsqr); add %sp,LOCALS64+$U2,$rp call __ecp_nistz256_mul_by_2_vis3 ! p256_mul_by_2(Hsqr, U2); add %sp,LOCALS64+$Hsqr,$rp add %sp,LOCALS64+$Rsqr,$bp call __ecp_nistz256_sub_morf_vis3 ! p256_sub(res_x, Rsqr, Hsqr); add %sp,LOCALS64+$res_x,$rp add %sp,LOCALS64+$Hcub,$bp call __ecp_nistz256_sub_from_vis3 ! p256_sub(res_x, res_x, Hcub); add %sp,LOCALS64+$res_x,$rp ldx [%sp+LOCALS64+$S1],$bi ! forward load ldx [%sp+LOCALS64+$Hcub],$a0 ldx [%sp+LOCALS64+$Hcub+8],$a1 ldx [%sp+LOCALS64+$Hcub+16],$a2 ldx [%sp+LOCALS64+$Hcub+24],$a3 add %sp,LOCALS64+$U2,$bp call __ecp_nistz256_sub_morf_vis3 ! p256_sub(res_y, U2, res_x); add %sp,LOCALS64+$res_y,$rp add %sp,LOCALS64+$S1,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(S2, S1, Hcub); add %sp,LOCALS64+$S2,$rp ldx [%sp+LOCALS64+$R],$bi ldx [%sp+LOCALS64+$res_y],$a0 ldx [%sp+LOCALS64+$res_y+8],$a1 ldx [%sp+LOCALS64+$res_y+16],$a2 ldx [%sp+LOCALS64+$res_y+24],$a3 add %sp,LOCALS64+$R,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(res_y, res_y, R); add %sp,LOCALS64+$res_y,$rp add %sp,LOCALS64+$S2,$bp call __ecp_nistz256_sub_from_vis3 ! p256_sub(res_y, res_y, S2); add %sp,LOCALS64+$res_y,$rp ldx [%fp+STACK_BIAS-16],$t1 ! !in1infty ldx [%fp+STACK_BIAS-8],$t2 ! !in2infty ___ for($i=0;$i<96;$i+=16) { # conditional moves $code.=<<___; ldx [%sp+LOCALS64+$res_x+$i],$acc0 ! res ldx [%sp+LOCALS64+$res_x+$i+8],$acc1 ldx [%sp+LOCALS64+$in2_x+$i],$acc2 ! in2 ldx [%sp+LOCALS64+$in2_x+$i+8],$acc3 ldx [%sp+LOCALS64+$in1_x+$i],$acc4 ! in1 ldx [%sp+LOCALS64+$in1_x+$i+8],$acc5 movrz $t1,$acc2,$acc0 movrz $t1,$acc3,$acc1 movrz $t2,$acc4,$acc0 movrz $t2,$acc5,$acc1 srlx $acc0,32,$acc2 srlx $acc1,32,$acc3 st $acc0,[$rp_real+$i] st $acc2,[$rp_real+$i+4] st $acc1,[$rp_real+$i+8] st $acc3,[$rp_real+$i+12] ___ } $code.=<<___; .Ladd_done_vis3: ret restore .type ecp_nistz256_point_add_vis3,#function .size ecp_nistz256_point_add_vis3,.-ecp_nistz256_point_add_vis3 ___ } ######################################################################## # void ecp_nistz256_point_add_affine(P256_POINT *out,const P256_POINT *in1, # const P256_POINT_AFFINE *in2); { my ($res_x,$res_y,$res_z, $in1_x,$in1_y,$in1_z, $in2_x,$in2_y, $U2,$S2,$H,$R,$Hsqr,$Hcub,$Rsqr)=map(32*$_,(0..14)); my $Z1sqr = $S2; # above map() describes stack layout with 15 temporary # 256-bit vectors on top. Then we reserve some space for # !in1infty and !in2infty. $code.=<<___; .align 32 ecp_nistz256_point_add_affine_vis3: save %sp,-STACK64_FRAME-32*15-32,%sp mov $rp,$rp_real mov -1,$minus1 mov -2,$poly3 sllx $minus1,32,$poly1 ! 0xFFFFFFFF00000000 srl $poly3,0,$poly3 ! 0x00000000FFFFFFFE ! convert input to uint64_t[4] ld [$bp],$a0 ! in2_x ld [$bp+4],$t0 ld [$bp+8],$a1 ld [$bp+12],$t1 ld [$bp+16],$a2 ld [$bp+20],$t2 ld [$bp+24],$a3 ld [$bp+28],$t3 sllx $t0,32,$t0 sllx $t1,32,$t1 ld [$bp+32],$acc0 ! in2_y or $a0,$t0,$a0 ld [$bp+32+4],$t0 sllx $t2,32,$t2 ld [$bp+32+8],$acc1 or $a1,$t1,$a1 ld [$bp+32+12],$t1 sllx $t3,32,$t3 ld [$bp+32+16],$acc2 or $a2,$t2,$a2 ld [$bp+32+20],$t2 or $a3,$t3,$a3 ld [$bp+32+24],$acc3 sllx $t0,32,$t0 ld [$bp+32+28],$t3 sllx $t1,32,$t1 stx $a0,[%sp+LOCALS64+$in2_x] sllx $t2,32,$t2 stx $a1,[%sp+LOCALS64+$in2_x+8] sllx $t3,32,$t3 stx $a2,[%sp+LOCALS64+$in2_x+16] or $acc0,$t0,$acc0 stx $a3,[%sp+LOCALS64+$in2_x+24] or $acc1,$t1,$acc1 stx $acc0,[%sp+LOCALS64+$in2_y] or $acc2,$t2,$acc2 stx $acc1,[%sp+LOCALS64+$in2_y+8] or $acc3,$t3,$acc3 stx $acc2,[%sp+LOCALS64+$in2_y+16] stx $acc3,[%sp+LOCALS64+$in2_y+24] or $a1,$a0,$a0 or $a3,$a2,$a2 or $acc1,$acc0,$acc0 or $acc3,$acc2,$acc2 or $a2,$a0,$a0 or $acc2,$acc0,$acc0 or $acc0,$a0,$a0 movrnz $a0,-1,$a0 ! !in2infty stx $a0,[%fp+STACK_BIAS-8] ld [$ap],$a0 ! in1_x ld [$ap+4],$t0 ld [$ap+8],$a1 ld [$ap+12],$t1 ld [$ap+16],$a2 ld [$ap+20],$t2 ld [$ap+24],$a3 ld [$ap+28],$t3 sllx $t0,32,$t0 sllx $t1,32,$t1 ld [$ap+32],$acc0 ! in1_y or $a0,$t0,$a0 ld [$ap+32+4],$t0 sllx $t2,32,$t2 ld [$ap+32+8],$acc1 or $a1,$t1,$a1 ld [$ap+32+12],$t1 sllx $t3,32,$t3 ld [$ap+32+16],$acc2 or $a2,$t2,$a2 ld [$ap+32+20],$t2 or $a3,$t3,$a3 ld [$ap+32+24],$acc3 sllx $t0,32,$t0 ld [$ap+32+28],$t3 sllx $t1,32,$t1 stx $a0,[%sp+LOCALS64+$in1_x] sllx $t2,32,$t2 stx $a1,[%sp+LOCALS64+$in1_x+8] sllx $t3,32,$t3 stx $a2,[%sp+LOCALS64+$in1_x+16] or $acc0,$t0,$acc0 stx $a3,[%sp+LOCALS64+$in1_x+24] or $acc1,$t1,$acc1 stx $acc0,[%sp+LOCALS64+$in1_y] or $acc2,$t2,$acc2 stx $acc1,[%sp+LOCALS64+$in1_y+8] or $acc3,$t3,$acc3 stx $acc2,[%sp+LOCALS64+$in1_y+16] stx $acc3,[%sp+LOCALS64+$in1_y+24] ld [$ap+64],$a0 ! in1_z ld [$ap+64+4],$t0 ld [$ap+64+8],$a1 ld [$ap+64+12],$t1 ld [$ap+64+16],$a2 ld [$ap+64+20],$t2 ld [$ap+64+24],$a3 ld [$ap+64+28],$t3 sllx $t0,32,$t0 sllx $t1,32,$t1 or $a0,$t0,$a0 sllx $t2,32,$t2 or $a1,$t1,$a1 sllx $t3,32,$t3 stx $a0,[%sp+LOCALS64+$in1_z] or $a2,$t2,$a2 stx $a1,[%sp+LOCALS64+$in1_z+8] or $a3,$t3,$a3 stx $a2,[%sp+LOCALS64+$in1_z+16] stx $a3,[%sp+LOCALS64+$in1_z+24] or $a1,$a0,$t0 or $a3,$a2,$t2 or $t2,$t0,$t0 movrnz $t0,-1,$t0 ! !in1infty stx $t0,[%fp+STACK_BIAS-16] call __ecp_nistz256_sqr_mont_vis3 ! p256_sqr_mont(Z1sqr, in1_z); add %sp,LOCALS64+$Z1sqr,$rp ldx [%sp+LOCALS64+$in2_x],$bi mov $acc0,$a0 mov $acc1,$a1 mov $acc2,$a2 mov $acc3,$a3 add %sp,LOCALS64+$in2_x,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(U2, Z1sqr, in2_x); add %sp,LOCALS64+$U2,$rp ldx [%sp+LOCALS64+$Z1sqr],$bi ! forward load ldx [%sp+LOCALS64+$in1_z],$a0 ldx [%sp+LOCALS64+$in1_z+8],$a1 ldx [%sp+LOCALS64+$in1_z+16],$a2 ldx [%sp+LOCALS64+$in1_z+24],$a3 add %sp,LOCALS64+$in1_x,$bp call __ecp_nistz256_sub_from_vis3 ! p256_sub(H, U2, in1_x); add %sp,LOCALS64+$H,$rp add %sp,LOCALS64+$Z1sqr,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(S2, Z1sqr, in1_z); add %sp,LOCALS64+$S2,$rp ldx [%sp+LOCALS64+$H],$bi ldx [%sp+LOCALS64+$in1_z],$a0 ldx [%sp+LOCALS64+$in1_z+8],$a1 ldx [%sp+LOCALS64+$in1_z+16],$a2 ldx [%sp+LOCALS64+$in1_z+24],$a3 add %sp,LOCALS64+$H,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(res_z, H, in1_z); add %sp,LOCALS64+$res_z,$rp ldx [%sp+LOCALS64+$S2],$bi ldx [%sp+LOCALS64+$in2_y],$a0 ldx [%sp+LOCALS64+$in2_y+8],$a1 ldx [%sp+LOCALS64+$in2_y+16],$a2 ldx [%sp+LOCALS64+$in2_y+24],$a3 add %sp,LOCALS64+$S2,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(S2, S2, in2_y); add %sp,LOCALS64+$S2,$rp ldx [%sp+LOCALS64+$H],$a0 ! forward load ldx [%sp+LOCALS64+$H+8],$a1 ldx [%sp+LOCALS64+$H+16],$a2 ldx [%sp+LOCALS64+$H+24],$a3 add %sp,LOCALS64+$in1_y,$bp call __ecp_nistz256_sub_from_vis3 ! p256_sub(R, S2, in1_y); add %sp,LOCALS64+$R,$rp call __ecp_nistz256_sqr_mont_vis3 ! p256_sqr_mont(Hsqr, H); add %sp,LOCALS64+$Hsqr,$rp ldx [%sp+LOCALS64+$R],$a0 ldx [%sp+LOCALS64+$R+8],$a1 ldx [%sp+LOCALS64+$R+16],$a2 ldx [%sp+LOCALS64+$R+24],$a3 call __ecp_nistz256_sqr_mont_vis3 ! p256_sqr_mont(Rsqr, R); add %sp,LOCALS64+$Rsqr,$rp ldx [%sp+LOCALS64+$H],$bi ldx [%sp+LOCALS64+$Hsqr],$a0 ldx [%sp+LOCALS64+$Hsqr+8],$a1 ldx [%sp+LOCALS64+$Hsqr+16],$a2 ldx [%sp+LOCALS64+$Hsqr+24],$a3 add %sp,LOCALS64+$H,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(Hcub, Hsqr, H); add %sp,LOCALS64+$Hcub,$rp ldx [%sp+LOCALS64+$Hsqr],$bi ldx [%sp+LOCALS64+$in1_x],$a0 ldx [%sp+LOCALS64+$in1_x+8],$a1 ldx [%sp+LOCALS64+$in1_x+16],$a2 ldx [%sp+LOCALS64+$in1_x+24],$a3 add %sp,LOCALS64+$Hsqr,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(U2, in1_x, Hsqr); add %sp,LOCALS64+$U2,$rp call __ecp_nistz256_mul_by_2_vis3 ! p256_mul_by_2(Hsqr, U2); add %sp,LOCALS64+$Hsqr,$rp add %sp,LOCALS64+$Rsqr,$bp call __ecp_nistz256_sub_morf_vis3 ! p256_sub(res_x, Rsqr, Hsqr); add %sp,LOCALS64+$res_x,$rp add %sp,LOCALS64+$Hcub,$bp call __ecp_nistz256_sub_from_vis3 ! p256_sub(res_x, res_x, Hcub); add %sp,LOCALS64+$res_x,$rp ldx [%sp+LOCALS64+$Hcub],$bi ! forward load ldx [%sp+LOCALS64+$in1_y],$a0 ldx [%sp+LOCALS64+$in1_y+8],$a1 ldx [%sp+LOCALS64+$in1_y+16],$a2 ldx [%sp+LOCALS64+$in1_y+24],$a3 add %sp,LOCALS64+$U2,$bp call __ecp_nistz256_sub_morf_vis3 ! p256_sub(res_y, U2, res_x); add %sp,LOCALS64+$res_y,$rp add %sp,LOCALS64+$Hcub,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(S2, in1_y, Hcub); add %sp,LOCALS64+$S2,$rp ldx [%sp+LOCALS64+$R],$bi ldx [%sp+LOCALS64+$res_y],$a0 ldx [%sp+LOCALS64+$res_y+8],$a1 ldx [%sp+LOCALS64+$res_y+16],$a2 ldx [%sp+LOCALS64+$res_y+24],$a3 add %sp,LOCALS64+$R,$bp call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(res_y, res_y, R); add %sp,LOCALS64+$res_y,$rp add %sp,LOCALS64+$S2,$bp call __ecp_nistz256_sub_from_vis3 ! p256_sub(res_y, res_y, S2); add %sp,LOCALS64+$res_y,$rp ldx [%fp+STACK_BIAS-16],$t1 ! !in1infty ldx [%fp+STACK_BIAS-8],$t2 ! !in2infty 1: call .+8 add %o7,.Lone_mont_vis3-1b,$bp ___ for($i=0;$i<64;$i+=16) { # conditional moves $code.=<<___; ldx [%sp+LOCALS64+$res_x+$i],$acc0 ! res ldx [%sp+LOCALS64+$res_x+$i+8],$acc1 ldx [%sp+LOCALS64+$in2_x+$i],$acc2 ! in2 ldx [%sp+LOCALS64+$in2_x+$i+8],$acc3 ldx [%sp+LOCALS64+$in1_x+$i],$acc4 ! in1 ldx [%sp+LOCALS64+$in1_x+$i+8],$acc5 movrz $t1,$acc2,$acc0 movrz $t1,$acc3,$acc1 movrz $t2,$acc4,$acc0 movrz $t2,$acc5,$acc1 srlx $acc0,32,$acc2 srlx $acc1,32,$acc3 st $acc0,[$rp_real+$i] st $acc2,[$rp_real+$i+4] st $acc1,[$rp_real+$i+8] st $acc3,[$rp_real+$i+12] ___ } for(;$i<96;$i+=16) { $code.=<<___; ldx [%sp+LOCALS64+$res_x+$i],$acc0 ! res ldx [%sp+LOCALS64+$res_x+$i+8],$acc1 ldx [$bp+$i-64],$acc2 ! "in2" ldx [$bp+$i-64+8],$acc3 ldx [%sp+LOCALS64+$in1_x+$i],$acc4 ! in1 ldx [%sp+LOCALS64+$in1_x+$i+8],$acc5 movrz $t1,$acc2,$acc0 movrz $t1,$acc3,$acc1 movrz $t2,$acc4,$acc0 movrz $t2,$acc5,$acc1 srlx $acc0,32,$acc2 srlx $acc1,32,$acc3 st $acc0,[$rp_real+$i] st $acc2,[$rp_real+$i+4] st $acc1,[$rp_real+$i+8] st $acc3,[$rp_real+$i+12] ___ } $code.=<<___; ret restore .type ecp_nistz256_point_add_affine_vis3,#function .size ecp_nistz256_point_add_affine_vis3,.-ecp_nistz256_point_add_affine_vis3 .align 64 .Lone_mont_vis3: .long 0x00000000,0x00000001, 0xffffffff,0x00000000 .long 0xffffffff,0xffffffff, 0x00000000,0xfffffffe .align 64 ___ } }}} # Purpose of these subroutines is to explicitly encode VIS instructions, # so that one can compile the module without having to specify VIS # extensions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a. # Idea is to reserve for option to produce "universal" binary and let # programmer detect if current CPU is VIS capable at run-time. sub unvis3 { my ($mnemonic,$rs1,$rs2,$rd)=@_; my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 ); my ($ref,$opf); my %visopf = ( "addxc" => 0x011, "addxccc" => 0x013, "umulxhi" => 0x016 ); $ref = "$mnemonic\t$rs1,$rs2,$rd"; if ($opf=$visopf{$mnemonic}) { foreach ($rs1,$rs2,$rd) { return $ref if (!/%([goli])([0-9])/); $_=$bias{$1}+$2; } return sprintf ".word\t0x%08x !%s", 0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2, $ref; } else { return $ref; } } foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval $1/ge; s/\b(umulxhi|addxc[c]{0,2})\s+(%[goli][0-7]),\s*(%[goli][0-7]),\s*(%[goli][0-7])/ &unvis3($1,$2,$3,$4) /ge; print $_,"\n"; } close STDOUT;