From aa4d426b4d3527d7e166df1a05058c9a4a0f6683 Mon Sep 17 00:00:00 2001 From: Wojtek Kosior Date: Fri, 30 Apr 2021 00:33:56 +0200 Subject: initial/final commit --- openssl-1.1.0h/crypto/ec/asm/ecp_nistz256-x86.pl | 1866 ++++++++++++++++++++++ 1 file changed, 1866 insertions(+) create mode 100755 openssl-1.1.0h/crypto/ec/asm/ecp_nistz256-x86.pl (limited to 'openssl-1.1.0h/crypto/ec/asm/ecp_nistz256-x86.pl') diff --git a/openssl-1.1.0h/crypto/ec/asm/ecp_nistz256-x86.pl b/openssl-1.1.0h/crypto/ec/asm/ecp_nistz256-x86.pl new file mode 100755 index 0000000..1d9e006 --- /dev/null +++ b/openssl-1.1.0h/crypto/ec/asm/ecp_nistz256-x86.pl @@ -0,0 +1,1866 @@ +#! /usr/bin/env perl +# Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved. +# +# Licensed under the OpenSSL license (the "License"). You may not use +# this file except in compliance with the License. You can obtain a copy +# in the file LICENSE in the source distribution or at +# https://www.openssl.org/source/license.html + + +# ==================================================================== +# Written by Andy Polyakov for the OpenSSL +# project. The module is, however, dual licensed under OpenSSL and +# CRYPTOGAMS licenses depending on where you obtain it. For further +# details see http://www.openssl.org/~appro/cryptogams/. +# ==================================================================== +# +# ECP_NISTZ256 module for x86/SSE2. +# +# October 2014. +# +# Original ECP_NISTZ256 submission targeting x86_64 is detailed in +# http://eprint.iacr.org/2013/816. In the process of adaptation +# original .c module was made 32-bit savvy in order to make this +# implementation possible. +# +# with/without -DECP_NISTZ256_ASM +# Pentium +66-163% +# PIII +72-172% +# P4 +65-132% +# Core2 +90-215% +# Sandy Bridge +105-265% (contemporary i[57]-* are all close to this) +# Atom +65-155% +# Opteron +54-110% +# Bulldozer +99-240% +# VIA Nano +93-290% +# +# Ranges denote minimum and maximum improvement coefficients depending +# on benchmark. Lower coefficients are for ECDSA sign, server-side +# operation. Keep in mind that +200% means 3x improvement. + +$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; +push(@INC,"${dir}","${dir}../../perlasm"); +require "x86asm.pl"; + +$output=pop; +open STDOUT,">$output"; + +&asm_init($ARGV[0],"ecp_nistz256-x86.pl",$ARGV[$#ARGV] eq "386"); + +$sse2=0; +for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); } + +&external_label("OPENSSL_ia32cap_P") if ($sse2); + + +######################################################################## +# Convert ecp_nistz256_table.c to layout expected by ecp_nistz_gather_w7 +# +open TABLE,") { + s/TOBN\(\s*(0x[0-9a-f]+),\s*(0x[0-9a-f]+)\s*\)/push @arr,hex($2),hex($1)/geo; +} +close TABLE; + +# See ecp_nistz256_table.c for explanation for why it's 64*16*37. +# 64*16*37-1 is because $#arr returns last valid index or @arr, not +# amount of elements. +die "insane number of elements" if ($#arr != 64*16*37-1); + +&public_label("ecp_nistz256_precomputed"); +&align(4096); +&set_label("ecp_nistz256_precomputed"); + +######################################################################## +# this conversion smashes P256_POINT_AFFINE by individual bytes with +# 64 byte interval, similar to +# 1111222233334444 +# 1234123412341234 +for(1..37) { + @tbl = splice(@arr,0,64*16); + for($i=0;$i<64;$i++) { + undef @line; + for($j=0;$j<64;$j++) { + push @line,(@tbl[$j*16+$i/4]>>(($i%4)*8))&0xff; + } + &data_byte(join(',',map { sprintf "0x%02x",$_} @line)); + } +} + +######################################################################## +# Keep in mind that constants are stored least to most significant word +&static_label("RR"); +&set_label("RR",64); +&data_word(3,0,-1,-5,-2,-1,-3,4); # 2^512 mod P-256 + +&static_label("ONE_mont"); +&set_label("ONE_mont"); +&data_word(1,0,0,-1,-1,-1,-2,0); + +&static_label("ONE"); +&set_label("ONE"); +&data_word(1,0,0,0,0,0,0,0); +&asciz("ECP_NISZ256 for x86/SSE2, CRYPTOGAMS by "); +&align(64); + +######################################################################## +# void ecp_nistz256_mul_by_2(BN_ULONG edi[8],const BN_ULONG esi[8]); +&function_begin("ecp_nistz256_mul_by_2"); + &mov ("esi",&wparam(1)); + &mov ("edi",&wparam(0)); + &mov ("ebp","esi"); +######################################################################## +# common pattern for internal functions is that %edi is result pointer, +# %esi and %ebp are input ones, %ebp being optional. %edi is preserved. + &call ("_ecp_nistz256_add"); +&function_end("ecp_nistz256_mul_by_2"); + +######################################################################## +# void ecp_nistz256_mul_by_3(BN_ULONG edi[8],const BN_ULONG esi[8]); +&function_begin("ecp_nistz256_mul_by_3"); + &mov ("esi",&wparam(1)); + # multiplication by 3 is performed + # as 2*n+n, but we can't use output + # to store 2*n, because if output + # pointer equals to input, then + # we'll get 2*n+2*n. + &stack_push(8); # therefore we need to allocate + # 256-bit intermediate buffer. + &mov ("edi","esp"); + &mov ("ebp","esi"); + &call ("_ecp_nistz256_add"); + &lea ("esi",&DWP(0,"edi")); + &mov ("ebp",&wparam(1)); + &mov ("edi",&wparam(0)); + &call ("_ecp_nistz256_add"); + &stack_pop(8); +&function_end("ecp_nistz256_mul_by_3"); + +######################################################################## +# void ecp_nistz256_div_by_2(BN_ULONG edi[8],const BN_ULONG esi[8]); +&function_begin("ecp_nistz256_div_by_2"); + &mov ("esi",&wparam(1)); + &mov ("edi",&wparam(0)); + &call ("_ecp_nistz256_div_by_2"); +&function_end("ecp_nistz256_div_by_2"); + +&function_begin_B("_ecp_nistz256_div_by_2"); + # tmp = a is odd ? a+mod : a + # + # note that because mod has special form, i.e. consists of + # 0xffffffff, 1 and 0s, we can conditionally synthesize it by + # assigning least significant bit of input to one register, + # %ebp, and its negative to another, %edx. + + &mov ("ebp",&DWP(0,"esi")); + &xor ("edx","edx"); + &mov ("ebx",&DWP(4,"esi")); + &mov ("eax","ebp"); + &and ("ebp",1); + &mov ("ecx",&DWP(8,"esi")); + &sub ("edx","ebp"); + + &add ("eax","edx"); + &adc ("ebx","edx"); + &mov (&DWP(0,"edi"),"eax"); + &adc ("ecx","edx"); + &mov (&DWP(4,"edi"),"ebx"); + &mov (&DWP(8,"edi"),"ecx"); + + &mov ("eax",&DWP(12,"esi")); + &mov ("ebx",&DWP(16,"esi")); + &adc ("eax",0); + &mov ("ecx",&DWP(20,"esi")); + &adc ("ebx",0); + &mov (&DWP(12,"edi"),"eax"); + &adc ("ecx",0); + &mov (&DWP(16,"edi"),"ebx"); + &mov (&DWP(20,"edi"),"ecx"); + + &mov ("eax",&DWP(24,"esi")); + &mov ("ebx",&DWP(28,"esi")); + &adc ("eax","ebp"); + &adc ("ebx","edx"); + &mov (&DWP(24,"edi"),"eax"); + &sbb ("esi","esi"); # broadcast carry bit + &mov (&DWP(28,"edi"),"ebx"); + + # ret = tmp >> 1 + + &mov ("eax",&DWP(0,"edi")); + &mov ("ebx",&DWP(4,"edi")); + &mov ("ecx",&DWP(8,"edi")); + &mov ("edx",&DWP(12,"edi")); + + &shr ("eax",1); + &mov ("ebp","ebx"); + &shl ("ebx",31); + &or ("eax","ebx"); + + &shr ("ebp",1); + &mov ("ebx","ecx"); + &shl ("ecx",31); + &mov (&DWP(0,"edi"),"eax"); + &or ("ebp","ecx"); + &mov ("eax",&DWP(16,"edi")); + + &shr ("ebx",1); + &mov ("ecx","edx"); + &shl ("edx",31); + &mov (&DWP(4,"edi"),"ebp"); + &or ("ebx","edx"); + &mov ("ebp",&DWP(20,"edi")); + + &shr ("ecx",1); + &mov ("edx","eax"); + &shl ("eax",31); + &mov (&DWP(8,"edi"),"ebx"); + &or ("ecx","eax"); + &mov ("ebx",&DWP(24,"edi")); + + &shr ("edx",1); + &mov ("eax","ebp"); + &shl ("ebp",31); + &mov (&DWP(12,"edi"),"ecx"); + &or ("edx","ebp"); + &mov ("ecx",&DWP(28,"edi")); + + &shr ("eax",1); + &mov ("ebp","ebx"); + &shl ("ebx",31); + &mov (&DWP(16,"edi"),"edx"); + &or ("eax","ebx"); + + &shr ("ebp",1); + &mov ("ebx","ecx"); + &shl ("ecx",31); + &mov (&DWP(20,"edi"),"eax"); + &or ("ebp","ecx"); + + &shr ("ebx",1); + &shl ("esi",31); + &mov (&DWP(24,"edi"),"ebp"); + &or ("ebx","esi"); # handle top-most carry bit + &mov (&DWP(28,"edi"),"ebx"); + + &ret (); +&function_end_B("_ecp_nistz256_div_by_2"); + +######################################################################## +# void ecp_nistz256_add(BN_ULONG edi[8],const BN_ULONG esi[8], +# const BN_ULONG ebp[8]); +&function_begin("ecp_nistz256_add"); + &mov ("esi",&wparam(1)); + &mov ("ebp",&wparam(2)); + &mov ("edi",&wparam(0)); + &call ("_ecp_nistz256_add"); +&function_end("ecp_nistz256_add"); + +&function_begin_B("_ecp_nistz256_add"); + &mov ("eax",&DWP(0,"esi")); + &mov ("ebx",&DWP(4,"esi")); + &mov ("ecx",&DWP(8,"esi")); + &add ("eax",&DWP(0,"ebp")); + &mov ("edx",&DWP(12,"esi")); + &adc ("ebx",&DWP(4,"ebp")); + &mov (&DWP(0,"edi"),"eax"); + &adc ("ecx",&DWP(8,"ebp")); + &mov (&DWP(4,"edi"),"ebx"); + &adc ("edx",&DWP(12,"ebp")); + &mov (&DWP(8,"edi"),"ecx"); + &mov (&DWP(12,"edi"),"edx"); + + &mov ("eax",&DWP(16,"esi")); + &mov ("ebx",&DWP(20,"esi")); + &mov ("ecx",&DWP(24,"esi")); + &adc ("eax",&DWP(16,"ebp")); + &mov ("edx",&DWP(28,"esi")); + &adc ("ebx",&DWP(20,"ebp")); + &mov (&DWP(16,"edi"),"eax"); + &adc ("ecx",&DWP(24,"ebp")); + &mov (&DWP(20,"edi"),"ebx"); + &mov ("esi",0); + &adc ("edx",&DWP(28,"ebp")); + &mov (&DWP(24,"edi"),"ecx"); + &adc ("esi",0); + &mov (&DWP(28,"edi"),"edx"); + + # if a+b >= modulus, subtract modulus. + # + # But since comparison implies subtraction, we subtract modulus + # to see if it borrows, and then subtract it for real if + # subtraction didn't borrow. + + &mov ("eax",&DWP(0,"edi")); + &mov ("ebx",&DWP(4,"edi")); + &mov ("ecx",&DWP(8,"edi")); + &sub ("eax",-1); + &mov ("edx",&DWP(12,"edi")); + &sbb ("ebx",-1); + &mov ("eax",&DWP(16,"edi")); + &sbb ("ecx",-1); + &mov ("ebx",&DWP(20,"edi")); + &sbb ("edx",0); + &mov ("ecx",&DWP(24,"edi")); + &sbb ("eax",0); + &mov ("edx",&DWP(28,"edi")); + &sbb ("ebx",0); + &sbb ("ecx",1); + &sbb ("edx",-1); + &sbb ("esi",0); + + # Note that because mod has special form, i.e. consists of + # 0xffffffff, 1 and 0s, we can conditionally synthesize it by + # by using borrow. + + ¬ ("esi"); + &mov ("eax",&DWP(0,"edi")); + &mov ("ebp","esi"); + &mov ("ebx",&DWP(4,"edi")); + &shr ("ebp",31); + &mov ("ecx",&DWP(8,"edi")); + &sub ("eax","esi"); + &mov ("edx",&DWP(12,"edi")); + &sbb ("ebx","esi"); + &mov (&DWP(0,"edi"),"eax"); + &sbb ("ecx","esi"); + &mov (&DWP(4,"edi"),"ebx"); + &sbb ("edx",0); + &mov (&DWP(8,"edi"),"ecx"); + &mov (&DWP(12,"edi"),"edx"); + + &mov ("eax",&DWP(16,"edi")); + &mov ("ebx",&DWP(20,"edi")); + &mov ("ecx",&DWP(24,"edi")); + &sbb ("eax",0); + &mov ("edx",&DWP(28,"edi")); + &sbb ("ebx",0); + &mov (&DWP(16,"edi"),"eax"); + &sbb ("ecx","ebp"); + &mov (&DWP(20,"edi"),"ebx"); + &sbb ("edx","esi"); + &mov (&DWP(24,"edi"),"ecx"); + &mov (&DWP(28,"edi"),"edx"); + + &ret (); +&function_end_B("_ecp_nistz256_add"); + +######################################################################## +# void ecp_nistz256_sub(BN_ULONG edi[8],const BN_ULONG esi[8], +# const BN_ULONG ebp[8]); +&function_begin("ecp_nistz256_sub"); + &mov ("esi",&wparam(1)); + &mov ("ebp",&wparam(2)); + &mov ("edi",&wparam(0)); + &call ("_ecp_nistz256_sub"); +&function_end("ecp_nistz256_sub"); + +&function_begin_B("_ecp_nistz256_sub"); + &mov ("eax",&DWP(0,"esi")); + &mov ("ebx",&DWP(4,"esi")); + &mov ("ecx",&DWP(8,"esi")); + &sub ("eax",&DWP(0,"ebp")); + &mov ("edx",&DWP(12,"esi")); + &sbb ("ebx",&DWP(4,"ebp")); + &mov (&DWP(0,"edi"),"eax"); + &sbb ("ecx",&DWP(8,"ebp")); + &mov (&DWP(4,"edi"),"ebx"); + &sbb ("edx",&DWP(12,"ebp")); + &mov (&DWP(8,"edi"),"ecx"); + &mov (&DWP(12,"edi"),"edx"); + + &mov ("eax",&DWP(16,"esi")); + &mov ("ebx",&DWP(20,"esi")); + &mov ("ecx",&DWP(24,"esi")); + &sbb ("eax",&DWP(16,"ebp")); + &mov ("edx",&DWP(28,"esi")); + &sbb ("ebx",&DWP(20,"ebp")); + &sbb ("ecx",&DWP(24,"ebp")); + &mov (&DWP(16,"edi"),"eax"); + &sbb ("edx",&DWP(28,"ebp")); + &mov (&DWP(20,"edi"),"ebx"); + &sbb ("esi","esi"); # broadcast borrow bit + &mov (&DWP(24,"edi"),"ecx"); + &mov (&DWP(28,"edi"),"edx"); + + # if a-b borrows, add modulus. + # + # Note that because mod has special form, i.e. consists of + # 0xffffffff, 1 and 0s, we can conditionally synthesize it by + # assigning borrow bit to one register, %ebp, and its negative + # to another, %esi. But we started by calculating %esi... + + &mov ("eax",&DWP(0,"edi")); + &mov ("ebp","esi"); + &mov ("ebx",&DWP(4,"edi")); + &shr ("ebp",31); + &mov ("ecx",&DWP(8,"edi")); + &add ("eax","esi"); + &mov ("edx",&DWP(12,"edi")); + &adc ("ebx","esi"); + &mov (&DWP(0,"edi"),"eax"); + &adc ("ecx","esi"); + &mov (&DWP(4,"edi"),"ebx"); + &adc ("edx",0); + &mov (&DWP(8,"edi"),"ecx"); + &mov (&DWP(12,"edi"),"edx"); + + &mov ("eax",&DWP(16,"edi")); + &mov ("ebx",&DWP(20,"edi")); + &mov ("ecx",&DWP(24,"edi")); + &adc ("eax",0); + &mov ("edx",&DWP(28,"edi")); + &adc ("ebx",0); + &mov (&DWP(16,"edi"),"eax"); + &adc ("ecx","ebp"); + &mov (&DWP(20,"edi"),"ebx"); + &adc ("edx","esi"); + &mov (&DWP(24,"edi"),"ecx"); + &mov (&DWP(28,"edi"),"edx"); + + &ret (); +&function_end_B("_ecp_nistz256_sub"); + +######################################################################## +# void ecp_nistz256_neg(BN_ULONG edi[8],const BN_ULONG esi[8]); +&function_begin("ecp_nistz256_neg"); + &mov ("ebp",&wparam(1)); + &mov ("edi",&wparam(0)); + + &xor ("eax","eax"); + &stack_push(8); + &mov (&DWP(0,"esp"),"eax"); + &mov ("esi","esp"); + &mov (&DWP(4,"esp"),"eax"); + &mov (&DWP(8,"esp"),"eax"); + &mov (&DWP(12,"esp"),"eax"); + &mov (&DWP(16,"esp"),"eax"); + &mov (&DWP(20,"esp"),"eax"); + &mov (&DWP(24,"esp"),"eax"); + &mov (&DWP(28,"esp"),"eax"); + + &call ("_ecp_nistz256_sub"); + + &stack_pop(8); +&function_end("ecp_nistz256_neg"); + +&function_begin_B("_picup_eax"); + &mov ("eax",&DWP(0,"esp")); + &ret (); +&function_end_B("_picup_eax"); + +######################################################################## +# void ecp_nistz256_to_mont(BN_ULONG edi[8],const BN_ULONG esi[8]); +&function_begin("ecp_nistz256_to_mont"); + &mov ("esi",&wparam(1)); + &call ("_picup_eax"); + &set_label("pic"); + &lea ("ebp",&DWP(&label("RR")."-".&label("pic"),"eax")); + if ($sse2) { + &picmeup("eax","OPENSSL_ia32cap_P","eax",&label("pic")); + &mov ("eax",&DWP(0,"eax")); } + &mov ("edi",&wparam(0)); + &call ("_ecp_nistz256_mul_mont"); +&function_end("ecp_nistz256_to_mont"); + +######################################################################## +# void ecp_nistz256_from_mont(BN_ULONG edi[8],const BN_ULONG esi[8]); +&function_begin("ecp_nistz256_from_mont"); + &mov ("esi",&wparam(1)); + &call ("_picup_eax"); + &set_label("pic"); + &lea ("ebp",&DWP(&label("ONE")."-".&label("pic"),"eax")); + if ($sse2) { + &picmeup("eax","OPENSSL_ia32cap_P","eax",&label("pic")); + &mov ("eax",&DWP(0,"eax")); } + &mov ("edi",&wparam(0)); + &call ("_ecp_nistz256_mul_mont"); +&function_end("ecp_nistz256_from_mont"); + +######################################################################## +# void ecp_nistz256_mul_mont(BN_ULONG edi[8],const BN_ULONG esi[8], +# const BN_ULONG ebp[8]); +&function_begin("ecp_nistz256_mul_mont"); + &mov ("esi",&wparam(1)); + &mov ("ebp",&wparam(2)); + if ($sse2) { + &call ("_picup_eax"); + &set_label("pic"); + &picmeup("eax","OPENSSL_ia32cap_P","eax",&label("pic")); + &mov ("eax",&DWP(0,"eax")); } + &mov ("edi",&wparam(0)); + &call ("_ecp_nistz256_mul_mont"); +&function_end("ecp_nistz256_mul_mont"); + +######################################################################## +# void ecp_nistz256_sqr_mont(BN_ULONG edi[8],const BN_ULONG esi[8]); +&function_begin("ecp_nistz256_sqr_mont"); + &mov ("esi",&wparam(1)); + if ($sse2) { + &call ("_picup_eax"); + &set_label("pic"); + &picmeup("eax","OPENSSL_ia32cap_P","eax",&label("pic")); + &mov ("eax",&DWP(0,"eax")); } + &mov ("edi",&wparam(0)); + &mov ("ebp","esi"); + &call ("_ecp_nistz256_mul_mont"); +&function_end("ecp_nistz256_sqr_mont"); + +&function_begin_B("_ecp_nistz256_mul_mont"); + if ($sse2) { + &and ("eax",1<<24|1<<26); + &cmp ("eax",1<<24|1<<26); # see if XMM+SSE2 is on + &jne (&label("mul_mont_ialu")); + + ######################################## + # SSE2 code path featuring 32x16-bit + # multiplications is ~2x faster than + # IALU counterpart (except on Atom)... + ######################################## + # stack layout: + # +------------------------------------+< %esp + # | 7 16-byte temporary XMM words, | + # | "sliding" toward lower address | + # . . + # +------------------------------------+ + # | unused XMM word | + # +------------------------------------+< +128,%ebx + # | 8 16-byte XMM words holding copies | + # | of a[i]<<64|a[i] | + # . . + # . . + # +------------------------------------+< +256 + &mov ("edx","esp"); + &sub ("esp",0x100); + + &movd ("xmm7",&DWP(0,"ebp")); # b[0] -> 0000.00xy + &lea ("ebp",&DWP(4,"ebp")); + &pcmpeqd("xmm6","xmm6"); + &psrlq ("xmm6",48); # compose 0xffff<<64|0xffff + + &pshuflw("xmm7","xmm7",0b11011100); # 0000.00xy -> 0000.0x0y + &and ("esp",-64); + &pshufd ("xmm7","xmm7",0b11011100); # 0000.0x0y -> 000x.000y + &lea ("ebx",&DWP(0x80,"esp")); + + &movd ("xmm0",&DWP(4*0,"esi")); # a[0] -> 0000.00xy + &pshufd ("xmm0","xmm0",0b11001100); # 0000.00xy -> 00xy.00xy + &movd ("xmm1",&DWP(4*1,"esi")); # a[1] -> ... + &movdqa (&QWP(0x00,"ebx"),"xmm0"); # offload converted a[0] + &pmuludq("xmm0","xmm7"); # a[0]*b[0] + + &movd ("xmm2",&DWP(4*2,"esi")); + &pshufd ("xmm1","xmm1",0b11001100); + &movdqa (&QWP(0x10,"ebx"),"xmm1"); + &pmuludq("xmm1","xmm7"); # a[1]*b[0] + + &movq ("xmm4","xmm0"); # clear upper 64 bits + &pslldq("xmm4",6); + &paddq ("xmm4","xmm0"); + &movdqa("xmm5","xmm4"); + &psrldq("xmm4",10); # upper 32 bits of a[0]*b[0] + &pand ("xmm5","xmm6"); # lower 32 bits of a[0]*b[0] + + # Upper half of a[0]*b[i] is carried into next multiplication + # iteration, while lower one "participates" in actual reduction. + # Normally latter is done by accumulating result of multiplication + # of modulus by "magic" digit, but thanks to special form of modulus + # and "magic" digit it can be performed only with additions and + # subtractions (see note in IALU section below). Note that we are + # not bothered with carry bits, they are accumulated in "flatten" + # phase after all multiplications and reductions. + + &movd ("xmm3",&DWP(4*3,"esi")); + &pshufd ("xmm2","xmm2",0b11001100); + &movdqa (&QWP(0x20,"ebx"),"xmm2"); + &pmuludq("xmm2","xmm7"); # a[2]*b[0] + &paddq ("xmm1","xmm4"); # a[1]*b[0]+hw(a[0]*b[0]), carry + &movdqa (&QWP(0x00,"esp"),"xmm1"); # t[0] + + &movd ("xmm0",&DWP(4*4,"esi")); + &pshufd ("xmm3","xmm3",0b11001100); + &movdqa (&QWP(0x30,"ebx"),"xmm3"); + &pmuludq("xmm3","xmm7"); # a[3]*b[0] + &movdqa (&QWP(0x10,"esp"),"xmm2"); + + &movd ("xmm1",&DWP(4*5,"esi")); + &pshufd ("xmm0","xmm0",0b11001100); + &movdqa (&QWP(0x40,"ebx"),"xmm0"); + &pmuludq("xmm0","xmm7"); # a[4]*b[0] + &paddq ("xmm3","xmm5"); # a[3]*b[0]+lw(a[0]*b[0]), reduction step + &movdqa (&QWP(0x20,"esp"),"xmm3"); + + &movd ("xmm2",&DWP(4*6,"esi")); + &pshufd ("xmm1","xmm1",0b11001100); + &movdqa (&QWP(0x50,"ebx"),"xmm1"); + &pmuludq("xmm1","xmm7"); # a[5]*b[0] + &movdqa (&QWP(0x30,"esp"),"xmm0"); + &pshufd("xmm4","xmm5",0b10110001); # xmm4 = xmm5<<32, reduction step + + &movd ("xmm3",&DWP(4*7,"esi")); + &pshufd ("xmm2","xmm2",0b11001100); + &movdqa (&QWP(0x60,"ebx"),"xmm2"); + &pmuludq("xmm2","xmm7"); # a[6]*b[0] + &movdqa (&QWP(0x40,"esp"),"xmm1"); + &psubq ("xmm4","xmm5"); # xmm4 = xmm5*0xffffffff, reduction step + + &movd ("xmm0",&DWP(0,"ebp")); # b[1] -> 0000.00xy + &pshufd ("xmm3","xmm3",0b11001100); + &movdqa (&QWP(0x70,"ebx"),"xmm3"); + &pmuludq("xmm3","xmm7"); # a[7]*b[0] + + &pshuflw("xmm7","xmm0",0b11011100); # 0000.00xy -> 0000.0x0y + &movdqa ("xmm0",&QWP(0x00,"ebx")); # pre-load converted a[0] + &pshufd ("xmm7","xmm7",0b11011100); # 0000.0x0y -> 000x.000y + + &mov ("ecx",6); + &lea ("ebp",&DWP(4,"ebp")); + &jmp (&label("madd_sse2")); + +&set_label("madd_sse2",16); + &paddq ("xmm2","xmm5"); # a[6]*b[i-1]+lw(a[0]*b[i-1]), reduction step [modulo-scheduled] + &paddq ("xmm3","xmm4"); # a[7]*b[i-1]+lw(a[0]*b[i-1])*0xffffffff, reduction step [modulo-scheduled] + &movdqa ("xmm1",&QWP(0x10,"ebx")); + &pmuludq("xmm0","xmm7"); # a[0]*b[i] + &movdqa(&QWP(0x50,"esp"),"xmm2"); + + &movdqa ("xmm2",&QWP(0x20,"ebx")); + &pmuludq("xmm1","xmm7"); # a[1]*b[i] + &movdqa(&QWP(0x60,"esp"),"xmm3"); + &paddq ("xmm0",&QWP(0x00,"esp")); + + &movdqa ("xmm3",&QWP(0x30,"ebx")); + &pmuludq("xmm2","xmm7"); # a[2]*b[i] + &movq ("xmm4","xmm0"); # clear upper 64 bits + &pslldq("xmm4",6); + &paddq ("xmm1",&QWP(0x10,"esp")); + &paddq ("xmm4","xmm0"); + &movdqa("xmm5","xmm4"); + &psrldq("xmm4",10); # upper 33 bits of a[0]*b[i]+t[0] + + &movdqa ("xmm0",&QWP(0x40,"ebx")); + &pmuludq("xmm3","xmm7"); # a[3]*b[i] + &paddq ("xmm1","xmm4"); # a[1]*b[i]+hw(a[0]*b[i]), carry + &paddq ("xmm2",&QWP(0x20,"esp")); + &movdqa (&QWP(0x00,"esp"),"xmm1"); + + &movdqa ("xmm1",&QWP(0x50,"ebx")); + &pmuludq("xmm0","xmm7"); # a[4]*b[i] + &paddq ("xmm3",&QWP(0x30,"esp")); + &movdqa (&QWP(0x10,"esp"),"xmm2"); + &pand ("xmm5","xmm6"); # lower 32 bits of a[0]*b[i] + + &movdqa ("xmm2",&QWP(0x60,"ebx")); + &pmuludq("xmm1","xmm7"); # a[5]*b[i] + &paddq ("xmm3","xmm5"); # a[3]*b[i]+lw(a[0]*b[i]), reduction step + &paddq ("xmm0",&QWP(0x40,"esp")); + &movdqa (&QWP(0x20,"esp"),"xmm3"); + &pshufd("xmm4","xmm5",0b10110001); # xmm4 = xmm5<<32, reduction step + + &movdqa ("xmm3","xmm7"); + &pmuludq("xmm2","xmm7"); # a[6]*b[i] + &movd ("xmm7",&DWP(0,"ebp")); # b[i++] -> 0000.00xy + &lea ("ebp",&DWP(4,"ebp")); + &paddq ("xmm1",&QWP(0x50,"esp")); + &psubq ("xmm4","xmm5"); # xmm4 = xmm5*0xffffffff, reduction step + &movdqa (&QWP(0x30,"esp"),"xmm0"); + &pshuflw("xmm7","xmm7",0b11011100); # 0000.00xy -> 0000.0x0y + + &pmuludq("xmm3",&QWP(0x70,"ebx")); # a[7]*b[i] + &pshufd("xmm7","xmm7",0b11011100); # 0000.0x0y -> 000x.000y + &movdqa("xmm0",&QWP(0x00,"ebx")); # pre-load converted a[0] + &movdqa (&QWP(0x40,"esp"),"xmm1"); + &paddq ("xmm2",&QWP(0x60,"esp")); + + &dec ("ecx"); + &jnz (&label("madd_sse2")); + + &paddq ("xmm2","xmm5"); # a[6]*b[6]+lw(a[0]*b[6]), reduction step [modulo-scheduled] + &paddq ("xmm3","xmm4"); # a[7]*b[6]+lw(a[0]*b[6])*0xffffffff, reduction step [modulo-scheduled] + &movdqa ("xmm1",&QWP(0x10,"ebx")); + &pmuludq("xmm0","xmm7"); # a[0]*b[7] + &movdqa(&QWP(0x50,"esp"),"xmm2"); + + &movdqa ("xmm2",&QWP(0x20,"ebx")); + &pmuludq("xmm1","xmm7"); # a[1]*b[7] + &movdqa(&QWP(0x60,"esp"),"xmm3"); + &paddq ("xmm0",&QWP(0x00,"esp")); + + &movdqa ("xmm3",&QWP(0x30,"ebx")); + &pmuludq("xmm2","xmm7"); # a[2]*b[7] + &movq ("xmm4","xmm0"); # clear upper 64 bits + &pslldq("xmm4",6); + &paddq ("xmm1",&QWP(0x10,"esp")); + &paddq ("xmm4","xmm0"); + &movdqa("xmm5","xmm4"); + &psrldq("xmm4",10); # upper 33 bits of a[0]*b[i]+t[0] + + &movdqa ("xmm0",&QWP(0x40,"ebx")); + &pmuludq("xmm3","xmm7"); # a[3]*b[7] + &paddq ("xmm1","xmm4"); # a[1]*b[7]+hw(a[0]*b[7]), carry + &paddq ("xmm2",&QWP(0x20,"esp")); + &movdqa (&QWP(0x00,"esp"),"xmm1"); + + &movdqa ("xmm1",&QWP(0x50,"ebx")); + &pmuludq("xmm0","xmm7"); # a[4]*b[7] + &paddq ("xmm3",&QWP(0x30,"esp")); + &movdqa (&QWP(0x10,"esp"),"xmm2"); + &pand ("xmm5","xmm6"); # lower 32 bits of a[0]*b[i] + + &movdqa ("xmm2",&QWP(0x60,"ebx")); + &pmuludq("xmm1","xmm7"); # a[5]*b[7] + &paddq ("xmm3","xmm5"); # reduction step + &paddq ("xmm0",&QWP(0x40,"esp")); + &movdqa (&QWP(0x20,"esp"),"xmm3"); + &pshufd("xmm4","xmm5",0b10110001); # xmm4 = xmm5<<32, reduction step + + &movdqa ("xmm3",&QWP(0x70,"ebx")); + &pmuludq("xmm2","xmm7"); # a[6]*b[7] + &paddq ("xmm1",&QWP(0x50,"esp")); + &psubq ("xmm4","xmm5"); # xmm4 = xmm5*0xffffffff, reduction step + &movdqa (&QWP(0x30,"esp"),"xmm0"); + + &pmuludq("xmm3","xmm7"); # a[7]*b[7] + &pcmpeqd("xmm7","xmm7"); + &movdqa ("xmm0",&QWP(0x00,"esp")); + &pslldq ("xmm7",8); + &movdqa (&QWP(0x40,"esp"),"xmm1"); + &paddq ("xmm2",&QWP(0x60,"esp")); + + &paddq ("xmm2","xmm5"); # a[6]*b[7]+lw(a[0]*b[7]), reduction step + &paddq ("xmm3","xmm4"); # a[6]*b[7]+lw(a[0]*b[7])*0xffffffff, reduction step + &movdqa(&QWP(0x50,"esp"),"xmm2"); + &movdqa(&QWP(0x60,"esp"),"xmm3"); + + &movdqa ("xmm1",&QWP(0x10,"esp")); + &movdqa ("xmm2",&QWP(0x20,"esp")); + &movdqa ("xmm3",&QWP(0x30,"esp")); + + &movq ("xmm4","xmm0"); # "flatten" + &pand ("xmm0","xmm7"); + &xor ("ebp","ebp"); + &pslldq ("xmm4",6); + &movq ("xmm5","xmm1"); + &paddq ("xmm0","xmm4"); + &pand ("xmm1","xmm7"); + &psrldq ("xmm0",6); + &movd ("eax","xmm0"); + &psrldq ("xmm0",4); + + &paddq ("xmm5","xmm0"); + &movdqa ("xmm0",&QWP(0x40,"esp")); + &sub ("eax",-1); # start subtracting modulus, + # this is used to determine + # if result is larger/smaller + # than modulus (see below) + &pslldq ("xmm5",6); + &movq ("xmm4","xmm2"); + &paddq ("xmm1","xmm5"); + &pand ("xmm2","xmm7"); + &psrldq ("xmm1",6); + &mov (&DWP(4*0,"edi"),"eax"); + &movd ("eax","xmm1"); + &psrldq ("xmm1",4); + + &paddq ("xmm4","xmm1"); + &movdqa ("xmm1",&QWP(0x50,"esp")); + &sbb ("eax",-1); + &pslldq ("xmm4",6); + &movq ("xmm5","xmm3"); + &paddq ("xmm2","xmm4"); + &pand ("xmm3","xmm7"); + &psrldq ("xmm2",6); + &mov (&DWP(4*1,"edi"),"eax"); + &movd ("eax","xmm2"); + &psrldq ("xmm2",4); + + &paddq ("xmm5","xmm2"); + &movdqa ("xmm2",&QWP(0x60,"esp")); + &sbb ("eax",-1); + &pslldq ("xmm5",6); + &movq ("xmm4","xmm0"); + &paddq ("xmm3","xmm5"); + &pand ("xmm0","xmm7"); + &psrldq ("xmm3",6); + &mov (&DWP(4*2,"edi"),"eax"); + &movd ("eax","xmm3"); + &psrldq ("xmm3",4); + + &paddq ("xmm4","xmm3"); + &sbb ("eax",0); + &pslldq ("xmm4",6); + &movq ("xmm5","xmm1"); + &paddq ("xmm0","xmm4"); + &pand ("xmm1","xmm7"); + &psrldq ("xmm0",6); + &mov (&DWP(4*3,"edi"),"eax"); + &movd ("eax","xmm0"); + &psrldq ("xmm0",4); + + &paddq ("xmm5","xmm0"); + &sbb ("eax",0); + &pslldq ("xmm5",6); + &movq ("xmm4","xmm2"); + &paddq ("xmm1","xmm5"); + &pand ("xmm2","xmm7"); + &psrldq ("xmm1",6); + &movd ("ebx","xmm1"); + &psrldq ("xmm1",4); + &mov ("esp","edx"); + + &paddq ("xmm4","xmm1"); + &pslldq ("xmm4",6); + &paddq ("xmm2","xmm4"); + &psrldq ("xmm2",6); + &movd ("ecx","xmm2"); + &psrldq ("xmm2",4); + &sbb ("ebx",0); + &movd ("edx","xmm2"); + &pextrw ("esi","xmm2",2); # top-most overflow bit + &sbb ("ecx",1); + &sbb ("edx",-1); + &sbb ("esi",0); # borrow from subtraction + + # Final step is "if result > mod, subtract mod", and at this point + # we have result - mod written to output buffer, as well as borrow + # bit from this subtraction, and if borrow bit is set, we add + # modulus back. + # + # Note that because mod has special form, i.e. consists of + # 0xffffffff, 1 and 0s, we can conditionally synthesize it by + # assigning borrow bit to one register, %ebp, and its negative + # to another, %esi. But we started by calculating %esi... + + &sub ("ebp","esi"); + &add (&DWP(4*0,"edi"),"esi"); # add modulus or zero + &adc (&DWP(4*1,"edi"),"esi"); + &adc (&DWP(4*2,"edi"),"esi"); + &adc (&DWP(4*3,"edi"),0); + &adc ("eax",0); + &adc ("ebx",0); + &mov (&DWP(4*4,"edi"),"eax"); + &adc ("ecx","ebp"); + &mov (&DWP(4*5,"edi"),"ebx"); + &adc ("edx","esi"); + &mov (&DWP(4*6,"edi"),"ecx"); + &mov (&DWP(4*7,"edi"),"edx"); + + &ret (); + +&set_label("mul_mont_ialu",16); } + + ######################################## + # IALU code path suitable for all CPUs. + ######################################## + # stack layout: + # +------------------------------------+< %esp + # | 8 32-bit temporary words, accessed | + # | as circular buffer | + # . . + # . . + # +------------------------------------+< +32 + # | offloaded destination pointer | + # +------------------------------------+ + # | unused | + # +------------------------------------+< +40 + &sub ("esp",10*4); + + &mov ("eax",&DWP(0*4,"esi")); # a[0] + &mov ("ebx",&DWP(0*4,"ebp")); # b[0] + &mov (&DWP(8*4,"esp"),"edi"); # off-load dst ptr + + &mul ("ebx"); # a[0]*b[0] + &mov (&DWP(0*4,"esp"),"eax"); # t[0] + &mov ("eax",&DWP(1*4,"esi")); + &mov ("ecx","edx") + + &mul ("ebx"); # a[1]*b[0] + &add ("ecx","eax"); + &mov ("eax",&DWP(2*4,"esi")); + &adc ("edx",0); + &mov (&DWP(1*4,"esp"),"ecx"); # t[1] + &mov ("ecx","edx"); + + &mul ("ebx"); # a[2]*b[0] + &add ("ecx","eax"); + &mov ("eax",&DWP(3*4,"esi")); + &adc ("edx",0); + &mov (&DWP(2*4,"esp"),"ecx"); # t[2] + &mov ("ecx","edx"); + + &mul ("ebx"); # a[3]*b[0] + &add ("ecx","eax"); + &mov ("eax",&DWP(4*4,"esi")); + &adc ("edx",0); + &mov (&DWP(3*4,"esp"),"ecx"); # t[3] + &mov ("ecx","edx"); + + &mul ("ebx"); # a[4]*b[0] + &add ("ecx","eax"); + &mov ("eax",&DWP(5*4,"esi")); + &adc ("edx",0); + &mov (&DWP(4*4,"esp"),"ecx"); # t[4] + &mov ("ecx","edx"); + + &mul ("ebx"); # a[5]*b[0] + &add ("ecx","eax"); + &mov ("eax",&DWP(6*4,"esi")); + &adc ("edx",0); + &mov (&DWP(5*4,"esp"),"ecx"); # t[5] + &mov ("ecx","edx"); + + &mul ("ebx"); # a[6]*b[0] + &add ("ecx","eax"); + &mov ("eax",&DWP(7*4,"esi")); + &adc ("edx",0); + &mov (&DWP(6*4,"esp"),"ecx"); # t[6] + &mov ("ecx","edx"); + + &xor ("edi","edi"); # initial top-most carry + &mul ("ebx"); # a[7]*b[0] + &add ("ecx","eax"); # t[7] + &mov ("eax",&DWP(0*4,"esp")); # t[0] + &adc ("edx",0); # t[8] + +for ($i=0;$i<7;$i++) { + my $j=$i+1; + + # Reduction iteration is normally performed by accumulating + # result of multiplication of modulus by "magic" digit [and + # omitting least significant word, which is guaranteed to + # be 0], but thanks to special form of modulus and "magic" + # digit being equal to least significant word, it can be + # performed with additions and subtractions alone. Indeed: + # + # ffff.0001.0000.0000.0000.ffff.ffff.ffff + # * abcd + # + xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.abcd + # + # Now observing that ff..ff*x = (2^n-1)*x = 2^n*x-x, we + # rewrite above as: + # + # xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.abcd + # + abcd.0000.abcd.0000.0000.abcd.0000.0000.0000 + # - abcd.0000.0000.0000.0000.0000.0000.abcd + # + # or marking redundant operations: + # + # xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.---- + # + abcd.0000.abcd.0000.0000.abcd.----.----.---- + # - abcd.----.----.----.----.----.----.---- + + &add (&DWP((($i+3)%8)*4,"esp"),"eax"); # t[3]+=t[0] + &adc (&DWP((($i+4)%8)*4,"esp"),0); # t[4]+=0 + &adc (&DWP((($i+5)%8)*4,"esp"),0); # t[5]+=0 + &adc (&DWP((($i+6)%8)*4,"esp"),"eax"); # t[6]+=t[0] + &adc ("ecx",0); # t[7]+=0 + &adc ("edx","eax"); # t[8]+=t[0] + &adc ("edi",0); # top-most carry + &mov ("ebx",&DWP($j*4,"ebp")); # b[i] + &sub ("ecx","eax"); # t[7]-=t[0] + &mov ("eax",&DWP(0*4,"esi")); # a[0] + &sbb ("edx",0); # t[8]-=0 + &mov (&DWP((($i+7)%8)*4,"esp"),"ecx"); + &sbb ("edi",0); # top-most carry, + # keep in mind that + # netto result is + # *addition* of value + # with (abcd<<32)-abcd + # on top, so that + # underflow is + # impossible, because + # (abcd<<32)-abcd + # doesn't underflow + &mov (&DWP((($i+8)%8)*4,"esp"),"edx"); + + &mul ("ebx"); # a[0]*b[i] + &add ("eax",&DWP((($j+0)%8)*4,"esp")); + &adc ("edx",0); + &mov (&DWP((($j+0)%8)*4,"esp"),"eax"); + &mov ("eax",&DWP(1*4,"esi")); + &mov ("ecx","edx") + + &mul ("ebx"); # a[1]*b[i] + &add ("ecx",&DWP((($j+1)%8)*4,"esp")); + &adc ("edx",0); + &add ("ecx","eax"); + &adc ("edx",0); + &mov ("eax",&DWP(2*4,"esi")); + &mov (&DWP((($j+1)%8)*4,"esp"),"ecx"); + &mov ("ecx","edx"); + + &mul ("ebx"); # a[2]*b[i] + &add ("ecx",&DWP((($j+2)%8)*4,"esp")); + &adc ("edx",0); + &add ("ecx","eax"); + &adc ("edx",0); + &mov ("eax",&DWP(3*4,"esi")); + &mov (&DWP((($j+2)%8)*4,"esp"),"ecx"); + &mov ("ecx","edx"); + + &mul ("ebx"); # a[3]*b[i] + &add ("ecx",&DWP((($j+3)%8)*4,"esp")); + &adc ("edx",0); + &add ("ecx","eax"); + &adc ("edx",0); + &mov ("eax",&DWP(4*4,"esi")); + &mov (&DWP((($j+3)%8)*4,"esp"),"ecx"); + &mov ("ecx","edx"); + + &mul ("ebx"); # a[4]*b[i] + &add ("ecx",&DWP((($j+4)%8)*4,"esp")); + &adc ("edx",0); + &add ("ecx","eax"); + &adc ("edx",0); + &mov ("eax",&DWP(5*4,"esi")); + &mov (&DWP((($j+4)%8)*4,"esp"),"ecx"); + &mov ("ecx","edx"); + + &mul ("ebx"); # a[5]*b[i] + &add ("ecx",&DWP((($j+5)%8)*4,"esp")); + &adc ("edx",0); + &add ("ecx","eax"); + &adc ("edx",0); + &mov ("eax",&DWP(6*4,"esi")); + &mov (&DWP((($j+5)%8)*4,"esp"),"ecx"); + &mov ("ecx","edx"); + + &mul ("ebx"); # a[6]*b[i] + &add ("ecx",&DWP((($j+6)%8)*4,"esp")); + &adc ("edx",0); + &add ("ecx","eax"); + &adc ("edx",0); + &mov ("eax",&DWP(7*4,"esi")); + &mov (&DWP((($j+6)%8)*4,"esp"),"ecx"); + &mov ("ecx","edx"); + + &mul ("ebx"); # a[7]*b[i] + &add ("ecx",&DWP((($j+7)%8)*4,"esp")); + &adc ("edx",0); + &add ("ecx","eax"); # t[7] + &mov ("eax",&DWP((($j+0)%8)*4,"esp")); # t[0] + &adc ("edx","edi"); # t[8] + &mov ("edi",0); + &adc ("edi",0); # top-most carry +} + &mov ("ebp",&DWP(8*4,"esp")); # restore dst ptr + &xor ("esi","esi"); + my $j=$i+1; + + # last multiplication-less reduction + &add (&DWP((($i+3)%8)*4,"esp"),"eax"); # t[3]+=t[0] + &adc (&DWP((($i+4)%8)*4,"esp"),0); # t[4]+=0 + &adc (&DWP((($i+5)%8)*4,"esp"),0); # t[5]+=0 + &adc (&DWP((($i+6)%8)*4,"esp"),"eax"); # t[6]+=t[0] + &adc ("ecx",0); # t[7]+=0 + &adc ("edx","eax"); # t[8]+=t[0] + &adc ("edi",0); # top-most carry + &mov ("ebx",&DWP((($j+1)%8)*4,"esp")); + &sub ("ecx","eax"); # t[7]-=t[0] + &mov ("eax",&DWP((($j+0)%8)*4,"esp")); + &sbb ("edx",0); # t[8]-=0 + &mov (&DWP((($i+7)%8)*4,"esp"),"ecx"); + &sbb ("edi",0); # top-most carry + &mov (&DWP((($i+8)%8)*4,"esp"),"edx"); + + # Final step is "if result > mod, subtract mod", but we do it + # "other way around", namely write result - mod to output buffer + # and if subtraction borrowed, add modulus back. + + &mov ("ecx",&DWP((($j+2)%8)*4,"esp")); + &sub ("eax",-1); + &mov ("edx",&DWP((($j+3)%8)*4,"esp")); + &sbb ("ebx",-1); + &mov (&DWP(0*4,"ebp"),"eax"); + &sbb ("ecx",-1); + &mov (&DWP(1*4,"ebp"),"ebx"); + &sbb ("edx",0); + &mov (&DWP(2*4,"ebp"),"ecx"); + &mov (&DWP(3*4,"ebp"),"edx"); + + &mov ("eax",&DWP((($j+4)%8)*4,"esp")); + &mov ("ebx",&DWP((($j+5)%8)*4,"esp")); + &mov ("ecx",&DWP((($j+6)%8)*4,"esp")); + &sbb ("eax",0); + &mov ("edx",&DWP((($j+7)%8)*4,"esp")); + &sbb ("ebx",0); + &sbb ("ecx",1); + &sbb ("edx",-1); + &sbb ("edi",0); + + # Note that because mod has special form, i.e. consists of + # 0xffffffff, 1 and 0s, we can conditionally synthesize it by + # assigning borrow bit to one register, %ebp, and its negative + # to another, %esi. But we started by calculating %esi... + + &sub ("esi","edi"); + &add (&DWP(0*4,"ebp"),"edi"); # add modulus or zero + &adc (&DWP(1*4,"ebp"),"edi"); + &adc (&DWP(2*4,"ebp"),"edi"); + &adc (&DWP(3*4,"ebp"),0); + &adc ("eax",0); + &adc ("ebx",0); + &mov (&DWP(4*4,"ebp"),"eax"); + &adc ("ecx","esi"); + &mov (&DWP(5*4,"ebp"),"ebx"); + &adc ("edx","edi"); + &mov (&DWP(6*4,"ebp"),"ecx"); + &mov ("edi","ebp"); # fulfill contract + &mov (&DWP(7*4,"ebp"),"edx"); + + &add ("esp",10*4); + &ret (); +&function_end_B("_ecp_nistz256_mul_mont"); + +######################################################################## +# void ecp_nistz256_scatter_w5(void *edi,const P256_POINT *esi, +# int ebp); +&function_begin("ecp_nistz256_scatter_w5"); + &mov ("edi",&wparam(0)); + &mov ("esi",&wparam(1)); + &mov ("ebp",&wparam(2)); + + &lea ("edi",&DWP(128-4,"edi","ebp",4)); + &mov ("ebp",96/16); +&set_label("scatter_w5_loop"); + &mov ("eax",&DWP(0,"esi")); + &mov ("ebx",&DWP(4,"esi")); + &mov ("ecx",&DWP(8,"esi")); + &mov ("edx",&DWP(12,"esi")); + &lea ("esi",&DWP(16,"esi")); + &mov (&DWP(64*0-128,"edi"),"eax"); + &mov (&DWP(64*1-128,"edi"),"ebx"); + &mov (&DWP(64*2-128,"edi"),"ecx"); + &mov (&DWP(64*3-128,"edi"),"edx"); + &lea ("edi",&DWP(64*4,"edi")); + &dec ("ebp"); + &jnz (&label("scatter_w5_loop")); +&function_end("ecp_nistz256_scatter_w5"); + +######################################################################## +# void ecp_nistz256_gather_w5(P256_POINT *edi,const void *esi, +# int ebp); +&function_begin("ecp_nistz256_gather_w5"); + &mov ("esi",&wparam(1)); + &mov ("ebp",&wparam(2)); + + &lea ("esi",&DWP(0,"esi","ebp",4)); + &neg ("ebp"); + &sar ("ebp",31); + &mov ("edi",&wparam(0)); + &lea ("esi",&DWP(0,"esi","ebp",4)); + + for($i=0;$i<24;$i+=4) { + &mov ("eax",&DWP(64*($i+0),"esi")); + &mov ("ebx",&DWP(64*($i+1),"esi")); + &mov ("ecx",&DWP(64*($i+2),"esi")); + &mov ("edx",&DWP(64*($i+3),"esi")); + &and ("eax","ebp"); + &and ("ebx","ebp"); + &and ("ecx","ebp"); + &and ("edx","ebp"); + &mov (&DWP(4*($i+0),"edi"),"eax"); + &mov (&DWP(4*($i+1),"edi"),"ebx"); + &mov (&DWP(4*($i+2),"edi"),"ecx"); + &mov (&DWP(4*($i+3),"edi"),"edx"); + } +&function_end("ecp_nistz256_gather_w5"); + +######################################################################## +# void ecp_nistz256_scatter_w7(void *edi,const P256_POINT_AFFINE *esi, +# int ebp); +&function_begin("ecp_nistz256_scatter_w7"); + &mov ("edi",&wparam(0)); + &mov ("esi",&wparam(1)); + &mov ("ebp",&wparam(2)); + + &lea ("edi",&DWP(-1,"edi","ebp")); + &mov ("ebp",64/4); +&set_label("scatter_w7_loop"); + &mov ("eax",&DWP(0,"esi")); + &lea ("esi",&DWP(4,"esi")); + &mov (&BP(64*0,"edi"),"al"); + &mov (&BP(64*1,"edi"),"ah"); + &shr ("eax",16); + &mov (&BP(64*2,"edi"),"al"); + &mov (&BP(64*3,"edi"),"ah"); + &lea ("edi",&DWP(64*4,"edi")); + &dec ("ebp"); + &jnz (&label("scatter_w7_loop")); +&function_end("ecp_nistz256_scatter_w7"); + +######################################################################## +# void ecp_nistz256_gather_w7(P256_POINT_AFFINE *edi,const void *esi, +# int ebp); +&function_begin("ecp_nistz256_gather_w7"); + &mov ("esi",&wparam(1)); + &mov ("ebp",&wparam(2)); + + &add ("esi","ebp"); + &neg ("ebp"), + &sar ("ebp",31); + &mov ("edi",&wparam(0)); + &lea ("esi",&DWP(0,"esi","ebp")); + + for($i=0;$i<64;$i+=4) { + &movz ("eax",&BP(64*($i+0),"esi")); + &movz ("ebx",&BP(64*($i+1),"esi")); + &movz ("ecx",&BP(64*($i+2),"esi")); + &and ("eax","ebp"); + &movz ("edx",&BP(64*($i+3),"esi")); + &and ("ebx","ebp"); + &mov (&BP($i+0,"edi"),"al"); + &and ("ecx","ebp"); + &mov (&BP($i+1,"edi"),"bl"); + &and ("edx","ebp"); + &mov (&BP($i+2,"edi"),"cl"); + &mov (&BP($i+3,"edi"),"dl"); + } +&function_end("ecp_nistz256_gather_w7"); + +######################################################################## +# following subroutines are "literal" implementation of those found in +# ecp_nistz256.c +# +######################################################################## +# void ecp_nistz256_point_double(P256_POINT *out,const P256_POINT *inp); +# +&static_label("point_double_shortcut"); +&function_begin("ecp_nistz256_point_double"); +{ my ($S,$M,$Zsqr,$in_x,$tmp0)=map(32*$_,(0..4)); + + &mov ("esi",&wparam(1)); + + # above map() describes stack layout with 5 temporary + # 256-bit vectors on top, then we take extra word for + # OPENSSL_ia32cap_P copy. + &stack_push(8*5+1); + if ($sse2) { + &call ("_picup_eax"); + &set_label("pic"); + &picmeup("edx","OPENSSL_ia32cap_P","eax",&label("pic")); + &mov ("ebp",&DWP(0,"edx")); } + +&set_label("point_double_shortcut"); + &mov ("eax",&DWP(0,"esi")); # copy in_x + &mov ("ebx",&DWP(4,"esi")); + &mov ("ecx",&DWP(8,"esi")); + &mov ("edx",&DWP(12,"esi")); + &mov (&DWP($in_x+0,"esp"),"eax"); + &mov (&DWP($in_x+4,"esp"),"ebx"); + &mov (&DWP($in_x+8,"esp"),"ecx"); + &mov (&DWP($in_x+12,"esp"),"edx"); + &mov ("eax",&DWP(16,"esi")); + &mov ("ebx",&DWP(20,"esi")); + &mov ("ecx",&DWP(24,"esi")); + &mov ("edx",&DWP(28,"esi")); + &mov (&DWP($in_x+16,"esp"),"eax"); + &mov (&DWP($in_x+20,"esp"),"ebx"); + &mov (&DWP($in_x+24,"esp"),"ecx"); + &mov (&DWP($in_x+28,"esp"),"edx"); + &mov (&DWP(32*5,"esp"),"ebp"); # OPENSSL_ia32cap_P copy + + &lea ("ebp",&DWP(32,"esi")); + &lea ("esi",&DWP(32,"esi")); + &lea ("edi",&DWP($S,"esp")); + &call ("_ecp_nistz256_add"); # p256_mul_by_2(S, in_y); + + &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy + &mov ("esi",64); + &add ("esi",&wparam(1)); + &lea ("edi",&DWP($Zsqr,"esp")); + &mov ("ebp","esi"); + &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Zsqr, in_z); + + &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($S,"esp")); + &lea ("ebp",&DWP($S,"esp")); + &lea ("edi",&DWP($S,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(S, S); + + &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy + &mov ("ebp",&wparam(1)); + &lea ("esi",&DWP(32,"ebp")); + &lea ("ebp",&DWP(64,"ebp")); + &lea ("edi",&DWP($tmp0,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(tmp0, in_z, in_y); + + &lea ("esi",&DWP($in_x,"esp")); + &lea ("ebp",&DWP($Zsqr,"esp")); + &lea ("edi",&DWP($M,"esp")); + &call ("_ecp_nistz256_add"); # p256_add(M, in_x, Zsqr); + + &mov ("edi",64); + &lea ("esi",&DWP($tmp0,"esp")); + &lea ("ebp",&DWP($tmp0,"esp")); + &add ("edi",&wparam(0)); + &call ("_ecp_nistz256_add"); # p256_mul_by_2(res_z, tmp0); + + &lea ("esi",&DWP($in_x,"esp")); + &lea ("ebp",&DWP($Zsqr,"esp")); + &lea ("edi",&DWP($Zsqr,"esp")); + &call ("_ecp_nistz256_sub"); # p256_sub(Zsqr, in_x, Zsqr); + + &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($S,"esp")); + &lea ("ebp",&DWP($S,"esp")); + &lea ("edi",&DWP($tmp0,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(tmp0, S); + + &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($M,"esp")); + &lea ("ebp",&DWP($Zsqr,"esp")); + &lea ("edi",&DWP($M,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(M, M, Zsqr); + + &mov ("edi",32); + &lea ("esi",&DWP($tmp0,"esp")); + &add ("edi",&wparam(0)); + &call ("_ecp_nistz256_div_by_2"); # p256_div_by_2(res_y, tmp0); + + &lea ("esi",&DWP($M,"esp")); + &lea ("ebp",&DWP($M,"esp")); + &lea ("edi",&DWP($tmp0,"esp")); + &call ("_ecp_nistz256_add"); # 1/2 p256_mul_by_3(M, M); + + &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($in_x,"esp")); + &lea ("ebp",&DWP($S,"esp")); + &lea ("edi",&DWP($S,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S, S, in_x); + + &lea ("esi",&DWP($tmp0,"esp")); + &lea ("ebp",&DWP($M,"esp")); + &lea ("edi",&DWP($M,"esp")); + &call ("_ecp_nistz256_add"); # 2/2 p256_mul_by_3(M, M); + + &lea ("esi",&DWP($S,"esp")); + &lea ("ebp",&DWP($S,"esp")); + &lea ("edi",&DWP($tmp0,"esp")); + &call ("_ecp_nistz256_add"); # p256_mul_by_2(tmp0, S); + + &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($M,"esp")); + &lea ("ebp",&DWP($M,"esp")); + &mov ("edi",&wparam(0)); + &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(res_x, M); + + &mov ("esi","edi"); # %edi is still res_x here + &lea ("ebp",&DWP($tmp0,"esp")); + &call ("_ecp_nistz256_sub"); # p256_sub(res_x, res_x, tmp0); + + &lea ("esi",&DWP($S,"esp")); + &mov ("ebp","edi"); # %edi is still res_x + &lea ("edi",&DWP($S,"esp")); + &call ("_ecp_nistz256_sub"); # p256_sub(S, S, res_x); + + &mov ("eax",&DWP(32*5,"esp")); # OPENSSL_ia32cap_P copy + &mov ("esi","edi"); # %edi is still &S + &lea ("ebp",&DWP($M,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S, S, M); + + &mov ("ebp",32); + &lea ("esi",&DWP($S,"esp")); + &add ("ebp",&wparam(0)); + &mov ("edi","ebp"); + &call ("_ecp_nistz256_sub"); # p256_sub(res_y, S, res_y); + + &stack_pop(8*5+1); +} &function_end("ecp_nistz256_point_double"); + +######################################################################## +# void ecp_nistz256_point_add(P256_POINT *out,const P256_POINT *in1, +# const P256_POINT *in2); +&function_begin("ecp_nistz256_point_add"); +{ my ($res_x,$res_y,$res_z, + $in1_x,$in1_y,$in1_z, + $in2_x,$in2_y,$in2_z, + $H,$Hsqr,$R,$Rsqr,$Hcub, + $U1,$U2,$S1,$S2)=map(32*$_,(0..17)); + my ($Z1sqr, $Z2sqr) = ($Hsqr, $Rsqr); + + &mov ("esi",&wparam(2)); + + # above map() describes stack layout with 18 temporary + # 256-bit vectors on top, then we take extra words for + # !in1infty, !in2infty, result of check for zero and + # OPENSSL_ia32cap_P copy. [one unused word for padding] + &stack_push(8*18+5); + if ($sse2) { + &call ("_picup_eax"); + &set_label("pic"); + &picmeup("edx","OPENSSL_ia32cap_P","eax",&label("pic")); + &mov ("ebp",&DWP(0,"edx")); } + + &lea ("edi",&DWP($in2_x,"esp")); + for($i=0;$i<96;$i+=16) { + &mov ("eax",&DWP($i+0,"esi")); # copy in2 + &mov ("ebx",&DWP($i+4,"esi")); + &mov ("ecx",&DWP($i+8,"esi")); + &mov ("edx",&DWP($i+12,"esi")); + &mov (&DWP($i+0,"edi"),"eax"); + &mov (&DWP(32*18+12,"esp"),"ebp") if ($i==0); + &mov ("ebp","eax") if ($i==64); + &or ("ebp","eax") if ($i>64); + &mov (&DWP($i+4,"edi"),"ebx"); + &or ("ebp","ebx") if ($i>=64); + &mov (&DWP($i+8,"edi"),"ecx"); + &or ("ebp","ecx") if ($i>=64); + &mov (&DWP($i+12,"edi"),"edx"); + &or ("ebp","edx") if ($i>=64); + } + &xor ("eax","eax"); + &mov ("esi",&wparam(1)); + &sub ("eax","ebp"); + &or ("ebp","eax"); + &sar ("ebp",31); + &mov (&DWP(32*18+4,"esp"),"ebp"); # !in2infty + + &lea ("edi",&DWP($in1_x,"esp")); + for($i=0;$i<96;$i+=16) { + &mov ("eax",&DWP($i+0,"esi")); # copy in1 + &mov ("ebx",&DWP($i+4,"esi")); + &mov ("ecx",&DWP($i+8,"esi")); + &mov ("edx",&DWP($i+12,"esi")); + &mov (&DWP($i+0,"edi"),"eax"); + &mov ("ebp","eax") if ($i==64); + &or ("ebp","eax") if ($i>64); + &mov (&DWP($i+4,"edi"),"ebx"); + &or ("ebp","ebx") if ($i>=64); + &mov (&DWP($i+8,"edi"),"ecx"); + &or ("ebp","ecx") if ($i>=64); + &mov (&DWP($i+12,"edi"),"edx"); + &or ("ebp","edx") if ($i>=64); + } + &xor ("eax","eax"); + &sub ("eax","ebp"); + &or ("ebp","eax"); + &sar ("ebp",31); + &mov (&DWP(32*18+0,"esp"),"ebp"); # !in1infty + + &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($in2_z,"esp")); + &lea ("ebp",&DWP($in2_z,"esp")); + &lea ("edi",&DWP($Z2sqr,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Z2sqr, in2_z); + + &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($in1_z,"esp")); + &lea ("ebp",&DWP($in1_z,"esp")); + &lea ("edi",&DWP($Z1sqr,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Z1sqr, in1_z); + + &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($Z2sqr,"esp")); + &lea ("ebp",&DWP($in2_z,"esp")); + &lea ("edi",&DWP($S1,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S1, Z2sqr, in2_z); + + &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($Z1sqr,"esp")); + &lea ("ebp",&DWP($in1_z,"esp")); + &lea ("edi",&DWP($S2,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S2, Z1sqr, in1_z); + + &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($in1_y,"esp")); + &lea ("ebp",&DWP($S1,"esp")); + &lea ("edi",&DWP($S1,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S1, S1, in1_y); + + &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($in2_y,"esp")); + &lea ("ebp",&DWP($S2,"esp")); + &lea ("edi",&DWP($S2,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S2, S2, in2_y); + + &lea ("esi",&DWP($S2,"esp")); + &lea ("ebp",&DWP($S1,"esp")); + &lea ("edi",&DWP($R,"esp")); + &call ("_ecp_nistz256_sub"); # p256_sub(R, S2, S1); + + &or ("ebx","eax"); # see if result is zero + &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy + &or ("ebx","ecx"); + &or ("ebx","edx"); + &or ("ebx",&DWP(0,"edi")); + &or ("ebx",&DWP(4,"edi")); + &lea ("esi",&DWP($in1_x,"esp")); + &or ("ebx",&DWP(8,"edi")); + &lea ("ebp",&DWP($Z2sqr,"esp")); + &or ("ebx",&DWP(12,"edi")); + &lea ("edi",&DWP($U1,"esp")); + &mov (&DWP(32*18+8,"esp"),"ebx"); + + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(U1, in1_x, Z2sqr); + + &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($in2_x,"esp")); + &lea ("ebp",&DWP($Z1sqr,"esp")); + &lea ("edi",&DWP($U2,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(U2, in2_x, Z1sqr); + + &lea ("esi",&DWP($U2,"esp")); + &lea ("ebp",&DWP($U1,"esp")); + &lea ("edi",&DWP($H,"esp")); + &call ("_ecp_nistz256_sub"); # p256_sub(H, U2, U1); + + &or ("eax","ebx"); # see if result is zero + &or ("eax","ecx"); + &or ("eax","edx"); + &or ("eax",&DWP(0,"edi")); + &or ("eax",&DWP(4,"edi")); + &or ("eax",&DWP(8,"edi")); + &or ("eax",&DWP(12,"edi")); + + &data_byte(0x3e); # predict taken + &jnz (&label("add_proceed")); # is_equal(U1,U2)? + + &mov ("eax",&DWP(32*18+0,"esp")); + &and ("eax",&DWP(32*18+4,"esp")); + &mov ("ebx",&DWP(32*18+8,"esp")); + &jz (&label("add_proceed")); # (in1infty || in2infty)? + &test ("ebx","ebx"); + &jz (&label("add_double")); # is_equal(S1,S2)? + + &mov ("edi",&wparam(0)); + &xor ("eax","eax"); + &mov ("ecx",96/4); + &data_byte(0xfc,0xf3,0xab); # cld; stosd + &jmp (&label("add_done")); + +&set_label("add_double",16); + &mov ("esi",&wparam(1)); + &mov ("ebp",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy + &add ("esp",4*((8*18+5)-(8*5+1))); # difference in frame sizes + &jmp (&label("point_double_shortcut")); + +&set_label("add_proceed",16); + &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($R,"esp")); + &lea ("ebp",&DWP($R,"esp")); + &lea ("edi",&DWP($Rsqr,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Rsqr, R); + + &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($H,"esp")); + &lea ("ebp",&DWP($in1_z,"esp")); + &lea ("edi",&DWP($res_z,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(res_z, H, in1_z); + + &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($H,"esp")); + &lea ("ebp",&DWP($H,"esp")); + &lea ("edi",&DWP($Hsqr,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Hsqr, H); + + &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($in2_z,"esp")); + &lea ("ebp",&DWP($res_z,"esp")); + &lea ("edi",&DWP($res_z,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(res_z, res_z, in2_z); + + &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($Hsqr,"esp")); + &lea ("ebp",&DWP($U1,"esp")); + &lea ("edi",&DWP($U2,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(U2, U1, Hsqr); + + &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($H,"esp")); + &lea ("ebp",&DWP($Hsqr,"esp")); + &lea ("edi",&DWP($Hcub,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(Hcub, Hsqr, H); + + &lea ("esi",&DWP($U2,"esp")); + &lea ("ebp",&DWP($U2,"esp")); + &lea ("edi",&DWP($Hsqr,"esp")); + &call ("_ecp_nistz256_add"); # p256_mul_by_2(Hsqr, U2); + + &lea ("esi",&DWP($Rsqr,"esp")); + &lea ("ebp",&DWP($Hsqr,"esp")); + &lea ("edi",&DWP($res_x,"esp")); + &call ("_ecp_nistz256_sub"); # p256_sub(res_x, Rsqr, Hsqr); + + &lea ("esi",&DWP($res_x,"esp")); + &lea ("ebp",&DWP($Hcub,"esp")); + &lea ("edi",&DWP($res_x,"esp")); + &call ("_ecp_nistz256_sub"); # p256_sub(res_x, res_x, Hcub); + + &lea ("esi",&DWP($U2,"esp")); + &lea ("ebp",&DWP($res_x,"esp")); + &lea ("edi",&DWP($res_y,"esp")); + &call ("_ecp_nistz256_sub"); # p256_sub(res_y, U2, res_x); + + &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($Hcub,"esp")); + &lea ("ebp",&DWP($S1,"esp")); + &lea ("edi",&DWP($S2,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S2, S1, Hcub); + + &mov ("eax",&DWP(32*18+12,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($R,"esp")); + &lea ("ebp",&DWP($res_y,"esp")); + &lea ("edi",&DWP($res_y,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(res_y, R, res_y); + + &lea ("esi",&DWP($res_y,"esp")); + &lea ("ebp",&DWP($S2,"esp")); + &lea ("edi",&DWP($res_y,"esp")); + &call ("_ecp_nistz256_sub"); # p256_sub(res_y, res_y, S2); + + &mov ("ebp",&DWP(32*18+0,"esp")); # !in1infty + &mov ("esi",&DWP(32*18+4,"esp")); # !in2infty + &mov ("edi",&wparam(0)); + &mov ("edx","ebp"); + ¬ ("ebp"); + &and ("edx","esi"); + &and ("ebp","esi"); + ¬ ("esi"); + + ######################################## + # conditional moves + for($i=64;$i<96;$i+=4) { + &mov ("eax","edx"); + &and ("eax",&DWP($res_x+$i,"esp")); + &mov ("ebx","ebp"); + &and ("ebx",&DWP($in2_x+$i,"esp")); + &mov ("ecx","esi"); + &and ("ecx",&DWP($in1_x+$i,"esp")); + &or ("eax","ebx"); + &or ("eax","ecx"); + &mov (&DWP($i,"edi"),"eax"); + } + for($i=0;$i<64;$i+=4) { + &mov ("eax","edx"); + &and ("eax",&DWP($res_x+$i,"esp")); + &mov ("ebx","ebp"); + &and ("ebx",&DWP($in2_x+$i,"esp")); + &mov ("ecx","esi"); + &and ("ecx",&DWP($in1_x+$i,"esp")); + &or ("eax","ebx"); + &or ("eax","ecx"); + &mov (&DWP($i,"edi"),"eax"); + } + &set_label("add_done"); + &stack_pop(8*18+5); +} &function_end("ecp_nistz256_point_add"); + +######################################################################## +# void ecp_nistz256_point_add_affine(P256_POINT *out, +# const P256_POINT *in1, +# const P256_POINT_AFFINE *in2); +&function_begin("ecp_nistz256_point_add_affine"); +{ + my ($res_x,$res_y,$res_z, + $in1_x,$in1_y,$in1_z, + $in2_x,$in2_y, + $U2,$S2,$H,$R,$Hsqr,$Hcub,$Rsqr)=map(32*$_,(0..14)); + my $Z1sqr = $S2; + my @ONE_mont=(1,0,0,-1,-1,-1,-2,0); + + &mov ("esi",&wparam(1)); + + # above map() describes stack layout with 15 temporary + # 256-bit vectors on top, then we take extra words for + # !in1infty, !in2infty, and OPENSSL_ia32cap_P copy. + &stack_push(8*15+3); + if ($sse2) { + &call ("_picup_eax"); + &set_label("pic"); + &picmeup("edx","OPENSSL_ia32cap_P","eax",&label("pic")); + &mov ("ebp",&DWP(0,"edx")); } + + &lea ("edi",&DWP($in1_x,"esp")); + for($i=0;$i<96;$i+=16) { + &mov ("eax",&DWP($i+0,"esi")); # copy in1 + &mov ("ebx",&DWP($i+4,"esi")); + &mov ("ecx",&DWP($i+8,"esi")); + &mov ("edx",&DWP($i+12,"esi")); + &mov (&DWP($i+0,"edi"),"eax"); + &mov (&DWP(32*15+8,"esp"),"ebp") if ($i==0); + &mov ("ebp","eax") if ($i==64); + &or ("ebp","eax") if ($i>64); + &mov (&DWP($i+4,"edi"),"ebx"); + &or ("ebp","ebx") if ($i>=64); + &mov (&DWP($i+8,"edi"),"ecx"); + &or ("ebp","ecx") if ($i>=64); + &mov (&DWP($i+12,"edi"),"edx"); + &or ("ebp","edx") if ($i>=64); + } + &xor ("eax","eax"); + &mov ("esi",&wparam(2)); + &sub ("eax","ebp"); + &or ("ebp","eax"); + &sar ("ebp",31); + &mov (&DWP(32*15+0,"esp"),"ebp"); # !in1infty + + &lea ("edi",&DWP($in2_x,"esp")); + for($i=0;$i<64;$i+=16) { + &mov ("eax",&DWP($i+0,"esi")); # copy in2 + &mov ("ebx",&DWP($i+4,"esi")); + &mov ("ecx",&DWP($i+8,"esi")); + &mov ("edx",&DWP($i+12,"esi")); + &mov (&DWP($i+0,"edi"),"eax"); + &mov ("ebp","eax") if ($i==0); + &or ("ebp","eax") if ($i!=0); + &mov (&DWP($i+4,"edi"),"ebx"); + &or ("ebp","ebx"); + &mov (&DWP($i+8,"edi"),"ecx"); + &or ("ebp","ecx"); + &mov (&DWP($i+12,"edi"),"edx"); + &or ("ebp","edx"); + } + &xor ("ebx","ebx"); + &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy + &sub ("ebx","ebp"); + &lea ("esi",&DWP($in1_z,"esp")); + &or ("ebx","ebp"); + &lea ("ebp",&DWP($in1_z,"esp")); + &sar ("ebx",31); + &lea ("edi",&DWP($Z1sqr,"esp")); + &mov (&DWP(32*15+4,"esp"),"ebx"); # !in2infty + + &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Z1sqr, in1_z); + + &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($in2_x,"esp")); + &mov ("ebp","edi"); # %esi is stull &Z1sqr + &lea ("edi",&DWP($U2,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(U2, Z1sqr, in2_x); + + &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($in1_z,"esp")); + &lea ("ebp",&DWP($Z1sqr,"esp")); + &lea ("edi",&DWP($S2,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S2, Z1sqr, in1_z); + + &lea ("esi",&DWP($U2,"esp")); + &lea ("ebp",&DWP($in1_x,"esp")); + &lea ("edi",&DWP($H,"esp")); + &call ("_ecp_nistz256_sub"); # p256_sub(H, U2, in1_x); + + &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($in2_y,"esp")); + &lea ("ebp",&DWP($S2,"esp")); + &lea ("edi",&DWP($S2,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S2, S2, in2_y); + + &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($in1_z,"esp")); + &lea ("ebp",&DWP($H,"esp")); + &lea ("edi",&DWP($res_z,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(res_z, H, in1_z); + + &lea ("esi",&DWP($S2,"esp")); + &lea ("ebp",&DWP($in1_y,"esp")); + &lea ("edi",&DWP($R,"esp")); + &call ("_ecp_nistz256_sub"); # p256_sub(R, S2, in1_y); + + &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($H,"esp")); + &lea ("ebp",&DWP($H,"esp")); + &lea ("edi",&DWP($Hsqr,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Hsqr, H); + + &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($R,"esp")); + &lea ("ebp",&DWP($R,"esp")); + &lea ("edi",&DWP($Rsqr,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_sqr_mont(Rsqr, R); + + &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($in1_x,"esp")); + &lea ("ebp",&DWP($Hsqr,"esp")); + &lea ("edi",&DWP($U2,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(U2, in1_x, Hsqr); + + &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($H,"esp")); + &lea ("ebp",&DWP($Hsqr,"esp")); + &lea ("edi",&DWP($Hcub,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(Hcub, Hsqr, H); + + &lea ("esi",&DWP($U2,"esp")); + &lea ("ebp",&DWP($U2,"esp")); + &lea ("edi",&DWP($Hsqr,"esp")); + &call ("_ecp_nistz256_add"); # p256_mul_by_2(Hsqr, U2); + + &lea ("esi",&DWP($Rsqr,"esp")); + &lea ("ebp",&DWP($Hsqr,"esp")); + &lea ("edi",&DWP($res_x,"esp")); + &call ("_ecp_nistz256_sub"); # p256_sub(res_x, Rsqr, Hsqr); + + &lea ("esi",&DWP($res_x,"esp")); + &lea ("ebp",&DWP($Hcub,"esp")); + &lea ("edi",&DWP($res_x,"esp")); + &call ("_ecp_nistz256_sub"); # p256_sub(res_x, res_x, Hcub); + + &lea ("esi",&DWP($U2,"esp")); + &lea ("ebp",&DWP($res_x,"esp")); + &lea ("edi",&DWP($res_y,"esp")); + &call ("_ecp_nistz256_sub"); # p256_sub(res_y, U2, res_x); + + &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($Hcub,"esp")); + &lea ("ebp",&DWP($in1_y,"esp")); + &lea ("edi",&DWP($S2,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(S2, Hcub, in1_y); + + &mov ("eax",&DWP(32*15+8,"esp")); # OPENSSL_ia32cap_P copy + &lea ("esi",&DWP($R,"esp")); + &lea ("ebp",&DWP($res_y,"esp")); + &lea ("edi",&DWP($res_y,"esp")); + &call ("_ecp_nistz256_mul_mont"); # p256_mul_mont(res_y, res_y, R); + + &lea ("esi",&DWP($res_y,"esp")); + &lea ("ebp",&DWP($S2,"esp")); + &lea ("edi",&DWP($res_y,"esp")); + &call ("_ecp_nistz256_sub"); # p256_sub(res_y, res_y, S2); + + &mov ("ebp",&DWP(32*15+0,"esp")); # !in1infty + &mov ("esi",&DWP(32*15+4,"esp")); # !in2infty + &mov ("edi",&wparam(0)); + &mov ("edx","ebp"); + ¬ ("ebp"); + &and ("edx","esi"); + &and ("ebp","esi"); + ¬ ("esi"); + + ######################################## + # conditional moves + for($i=64;$i<96;$i+=4) { + my $one=@ONE_mont[($i-64)/4]; + + &mov ("eax","edx"); + &and ("eax",&DWP($res_x+$i,"esp")); + &mov ("ebx","ebp") if ($one && $one!=-1); + &and ("ebx",$one) if ($one && $one!=-1); + &mov ("ecx","esi"); + &and ("ecx",&DWP($in1_x+$i,"esp")); + &or ("eax",$one==-1?"ebp":"ebx") if ($one); + &or ("eax","ecx"); + &mov (&DWP($i,"edi"),"eax"); + } + for($i=0;$i<64;$i+=4) { + &mov ("eax","edx"); + &and ("eax",&DWP($res_x+$i,"esp")); + &mov ("ebx","ebp"); + &and ("ebx",&DWP($in2_x+$i,"esp")); + &mov ("ecx","esi"); + &and ("ecx",&DWP($in1_x+$i,"esp")); + &or ("eax","ebx"); + &or ("eax","ecx"); + &mov (&DWP($i,"edi"),"eax"); + } + &stack_pop(8*15+3); +} &function_end("ecp_nistz256_point_add_affine"); + +&asm_finish(); + +close STDOUT; -- cgit v1.2.3