From aa4d426b4d3527d7e166df1a05058c9a4a0f6683 Mon Sep 17 00:00:00 2001 From: Wojtek Kosior Date: Fri, 30 Apr 2021 00:33:56 +0200 Subject: initial/final commit --- openssl-1.1.0h/crypto/bn/bn_kron.c | 140 +++++++++++++++++++++++++++++++++++++ 1 file changed, 140 insertions(+) create mode 100644 openssl-1.1.0h/crypto/bn/bn_kron.c (limited to 'openssl-1.1.0h/crypto/bn/bn_kron.c') diff --git a/openssl-1.1.0h/crypto/bn/bn_kron.c b/openssl-1.1.0h/crypto/bn/bn_kron.c new file mode 100644 index 0000000..b9bc6cc --- /dev/null +++ b/openssl-1.1.0h/crypto/bn/bn_kron.c @@ -0,0 +1,140 @@ +/* + * Copyright 2000-2016 The OpenSSL Project Authors. All Rights Reserved. + * + * Licensed under the OpenSSL license (the "License"). You may not use + * this file except in compliance with the License. You can obtain a copy + * in the file LICENSE in the source distribution or at + * https://www.openssl.org/source/license.html + */ + +#include "internal/cryptlib.h" +#include "bn_lcl.h" + +/* least significant word */ +#define BN_lsw(n) (((n)->top == 0) ? (BN_ULONG) 0 : (n)->d[0]) + +/* Returns -2 for errors because both -1 and 0 are valid results. */ +int BN_kronecker(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) +{ + int i; + int ret = -2; /* avoid 'uninitialized' warning */ + int err = 0; + BIGNUM *A, *B, *tmp; + /*- + * In 'tab', only odd-indexed entries are relevant: + * For any odd BIGNUM n, + * tab[BN_lsw(n) & 7] + * is $(-1)^{(n^2-1)/8}$ (using TeX notation). + * Note that the sign of n does not matter. + */ + static const int tab[8] = { 0, 1, 0, -1, 0, -1, 0, 1 }; + + bn_check_top(a); + bn_check_top(b); + + BN_CTX_start(ctx); + A = BN_CTX_get(ctx); + B = BN_CTX_get(ctx); + if (B == NULL) + goto end; + + err = !BN_copy(A, a); + if (err) + goto end; + err = !BN_copy(B, b); + if (err) + goto end; + + /* + * Kronecker symbol, implemented according to Henri Cohen, + * "A Course in Computational Algebraic Number Theory" + * (algorithm 1.4.10). + */ + + /* Cohen's step 1: */ + + if (BN_is_zero(B)) { + ret = BN_abs_is_word(A, 1); + goto end; + } + + /* Cohen's step 2: */ + + if (!BN_is_odd(A) && !BN_is_odd(B)) { + ret = 0; + goto end; + } + + /* now B is non-zero */ + i = 0; + while (!BN_is_bit_set(B, i)) + i++; + err = !BN_rshift(B, B, i); + if (err) + goto end; + if (i & 1) { + /* i is odd */ + /* (thus B was even, thus A must be odd!) */ + + /* set 'ret' to $(-1)^{(A^2-1)/8}$ */ + ret = tab[BN_lsw(A) & 7]; + } else { + /* i is even */ + ret = 1; + } + + if (B->neg) { + B->neg = 0; + if (A->neg) + ret = -ret; + } + + /* + * now B is positive and odd, so what remains to be done is to compute + * the Jacobi symbol (A/B) and multiply it by 'ret' + */ + + while (1) { + /* Cohen's step 3: */ + + /* B is positive and odd */ + + if (BN_is_zero(A)) { + ret = BN_is_one(B) ? ret : 0; + goto end; + } + + /* now A is non-zero */ + i = 0; + while (!BN_is_bit_set(A, i)) + i++; + err = !BN_rshift(A, A, i); + if (err) + goto end; + if (i & 1) { + /* i is odd */ + /* multiply 'ret' by $(-1)^{(B^2-1)/8}$ */ + ret = ret * tab[BN_lsw(B) & 7]; + } + + /* Cohen's step 4: */ + /* multiply 'ret' by $(-1)^{(A-1)(B-1)/4}$ */ + if ((A->neg ? ~BN_lsw(A) : BN_lsw(A)) & BN_lsw(B) & 2) + ret = -ret; + + /* (A, B) := (B mod |A|, |A|) */ + err = !BN_nnmod(B, B, A, ctx); + if (err) + goto end; + tmp = A; + A = B; + B = tmp; + tmp->neg = 0; + } + end: + BN_CTX_end(ctx); + if (err) + return -2; + else + return ret; +} -- cgit v1.2.3