From aa4d426b4d3527d7e166df1a05058c9a4a0f6683 Mon Sep 17 00:00:00 2001 From: Wojtek Kosior Date: Fri, 30 Apr 2021 00:33:56 +0200 Subject: initial/final commit --- openssl-1.1.0h/crypto/asn1/a_int.c | 630 +++++++++++++++++++++++++++++++++++++ 1 file changed, 630 insertions(+) create mode 100644 openssl-1.1.0h/crypto/asn1/a_int.c (limited to 'openssl-1.1.0h/crypto/asn1/a_int.c') diff --git a/openssl-1.1.0h/crypto/asn1/a_int.c b/openssl-1.1.0h/crypto/asn1/a_int.c new file mode 100644 index 0000000..217650a --- /dev/null +++ b/openssl-1.1.0h/crypto/asn1/a_int.c @@ -0,0 +1,630 @@ +/* + * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved. + * + * Licensed under the OpenSSL license (the "License"). You may not use + * this file except in compliance with the License. You can obtain a copy + * in the file LICENSE in the source distribution or at + * https://www.openssl.org/source/license.html + */ + +#include +#include "internal/cryptlib.h" +#include "internal/numbers.h" +#include +#include +#include +#include "asn1_locl.h" + +ASN1_INTEGER *ASN1_INTEGER_dup(const ASN1_INTEGER *x) +{ + return ASN1_STRING_dup(x); +} + +int ASN1_INTEGER_cmp(const ASN1_INTEGER *x, const ASN1_INTEGER *y) +{ + int neg, ret; + /* Compare signs */ + neg = x->type & V_ASN1_NEG; + if (neg != (y->type & V_ASN1_NEG)) { + if (neg) + return -1; + else + return 1; + } + + ret = ASN1_STRING_cmp(x, y); + + if (neg) + return -ret; + else + return ret; +} + +/*- + * This converts a big endian buffer and sign into its content encoding. + * This is used for INTEGER and ENUMERATED types. + * The internal representation is an ASN1_STRING whose data is a big endian + * representation of the value, ignoring the sign. The sign is determined by + * the type: if type & V_ASN1_NEG is true it is negative, otherwise positive. + * + * Positive integers are no problem: they are almost the same as the DER + * encoding, except if the first byte is >= 0x80 we need to add a zero pad. + * + * Negative integers are a bit trickier... + * The DER representation of negative integers is in 2s complement form. + * The internal form is converted by complementing each octet and finally + * adding one to the result. This can be done less messily with a little trick. + * If the internal form has trailing zeroes then they will become FF by the + * complement and 0 by the add one (due to carry) so just copy as many trailing + * zeros to the destination as there are in the source. The carry will add one + * to the last none zero octet: so complement this octet and add one and finally + * complement any left over until you get to the start of the string. + * + * Padding is a little trickier too. If the first bytes is > 0x80 then we pad + * with 0xff. However if the first byte is 0x80 and one of the following bytes + * is non-zero we pad with 0xff. The reason for this distinction is that 0x80 + * followed by optional zeros isn't padded. + */ + +/* + * If |pad| is zero, the operation is effectively reduced to memcpy, + * and if |pad| is 0xff, then it performs two's complement, ~dst + 1. + * Note that in latter case sequence of zeros yields itself, and so + * does 0x80 followed by any number of zeros. These properties are + * used elsewhere below... + */ +static void twos_complement(unsigned char *dst, const unsigned char *src, + size_t len, unsigned char pad) +{ + unsigned int carry = pad & 1; + + /* Begin at the end of the encoding */ + dst += len; + src += len; + /* two's complement value: ~value + 1 */ + while (len-- != 0) { + *(--dst) = (unsigned char)(carry += *(--src) ^ pad); + carry >>= 8; + } +} + +static size_t i2c_ibuf(const unsigned char *b, size_t blen, int neg, + unsigned char **pp) +{ + unsigned int pad = 0; + size_t ret, i; + unsigned char *p, pb = 0; + + if (b != NULL && blen) { + ret = blen; + i = b[0]; + if (!neg && (i > 127)) { + pad = 1; + pb = 0; + } else if (neg) { + pb = 0xFF; + if (i > 128) { + pad = 1; + } else if (i == 128) { + /* + * Special case [of minimal negative for given length]: + * if any other bytes non zero we pad, otherwise we don't. + */ + for (pad = 0, i = 1; i < blen; i++) + pad |= b[i]; + pb = pad != 0 ? 0xffU : 0; + pad = pb & 1; + } + } + ret += pad; + } else { + ret = 1; + blen = 0; /* reduce '(b == NULL || blen == 0)' to '(blen == 0)' */ + } + + if (pp == NULL || (p = *pp) == NULL) + return ret; + + /* + * This magically handles all corner cases, such as '(b == NULL || + * blen == 0)', non-negative value, "negative" zero, 0x80 followed + * by any number of zeros... + */ + *p = pb; + p += pad; /* yes, p[0] can be written twice, but it's little + * price to pay for eliminated branches */ + twos_complement(p, b, blen, pb); + + *pp += ret; + return ret; +} + +/* + * convert content octets into a big endian buffer. Returns the length + * of buffer or 0 on error: for malformed INTEGER. If output buffer is + * NULL just return length. + */ + +static size_t c2i_ibuf(unsigned char *b, int *pneg, + const unsigned char *p, size_t plen) +{ + int neg, pad; + /* Zero content length is illegal */ + if (plen == 0) { + ASN1err(ASN1_F_C2I_IBUF, ASN1_R_ILLEGAL_ZERO_CONTENT); + return 0; + } + neg = p[0] & 0x80; + if (pneg) + *pneg = neg; + /* Handle common case where length is 1 octet separately */ + if (plen == 1) { + if (b != NULL) { + if (neg) + b[0] = (p[0] ^ 0xFF) + 1; + else + b[0] = p[0]; + } + return 1; + } + + pad = 0; + if (p[0] == 0) { + pad = 1; + } else if (p[0] == 0xFF) { + size_t i; + + /* + * Special case [of "one less minimal negative" for given length]: + * if any other bytes non zero it was padded, otherwise not. + */ + for (pad = 0, i = 1; i < plen; i++) + pad |= p[i]; + pad = pad != 0 ? 1 : 0; + } + /* reject illegal padding: first two octets MSB can't match */ + if (pad && (neg == (p[1] & 0x80))) { + ASN1err(ASN1_F_C2I_IBUF, ASN1_R_ILLEGAL_PADDING); + return 0; + } + + /* skip over pad */ + p += pad; + plen -= pad; + + if (b != NULL) + twos_complement(b, p, plen, neg ? 0xffU : 0); + + return plen; +} + +int i2c_ASN1_INTEGER(ASN1_INTEGER *a, unsigned char **pp) +{ + return i2c_ibuf(a->data, a->length, a->type & V_ASN1_NEG, pp); +} + +/* Convert big endian buffer into uint64_t, return 0 on error */ +static int asn1_get_uint64(uint64_t *pr, const unsigned char *b, size_t blen) +{ + size_t i; + uint64_t r; + + if (blen > sizeof(*pr)) { + ASN1err(ASN1_F_ASN1_GET_UINT64, ASN1_R_TOO_LARGE); + return 0; + } + if (b == NULL) + return 0; + for (r = 0, i = 0; i < blen; i++) { + r <<= 8; + r |= b[i]; + } + *pr = r; + return 1; +} + +/* + * Write uint64_t to big endian buffer and return offset to first + * written octet. In other words it returns offset in range from 0 + * to 7, with 0 denoting 8 written octets and 7 - one. + */ +static size_t asn1_put_uint64(unsigned char b[sizeof(uint64_t)], uint64_t r) +{ + size_t off = sizeof(uint64_t); + + do { + b[--off] = (unsigned char)r; + } while (r >>= 8); + + return off; +} + +/* + * Absolute value of INT64_MIN: we can't just use -INT64_MIN as gcc produces + * overflow warnings. + */ +#define ABS_INT64_MIN ((uint64_t)INT64_MAX + (-(INT64_MIN + INT64_MAX))) + +/* signed version of asn1_get_uint64 */ +static int asn1_get_int64(int64_t *pr, const unsigned char *b, size_t blen, + int neg) +{ + uint64_t r; + if (asn1_get_uint64(&r, b, blen) == 0) + return 0; + if (neg) { + if (r <= INT64_MAX) { + /* Most significant bit is guaranteed to be clear, negation + * is guaranteed to be meaningful in platform-neutral sense. */ + *pr = -(int64_t)r; + } else if (r == ABS_INT64_MIN) { + /* This never happens if INT64_MAX == ABS_INT64_MIN, e.g. + * on ones'-complement system. */ + *pr = (int64_t)(0 - r); + } else { + ASN1err(ASN1_F_ASN1_GET_INT64, ASN1_R_TOO_SMALL); + return 0; + } + } else { + if (r <= INT64_MAX) { + *pr = (int64_t)r; + } else { + ASN1err(ASN1_F_ASN1_GET_INT64, ASN1_R_TOO_LARGE); + return 0; + } + } + return 1; +} + +/* Convert ASN1 INTEGER content octets to ASN1_INTEGER structure */ +ASN1_INTEGER *c2i_ASN1_INTEGER(ASN1_INTEGER **a, const unsigned char **pp, + long len) +{ + ASN1_INTEGER *ret = NULL; + size_t r; + int neg; + + r = c2i_ibuf(NULL, NULL, *pp, len); + + if (r == 0) + return NULL; + + if ((a == NULL) || ((*a) == NULL)) { + ret = ASN1_INTEGER_new(); + if (ret == NULL) + return NULL; + ret->type = V_ASN1_INTEGER; + } else + ret = *a; + + if (ASN1_STRING_set(ret, NULL, r) == 0) + goto err; + + c2i_ibuf(ret->data, &neg, *pp, len); + + if (neg) + ret->type |= V_ASN1_NEG; + + *pp += len; + if (a != NULL) + (*a) = ret; + return ret; + err: + ASN1err(ASN1_F_C2I_ASN1_INTEGER, ERR_R_MALLOC_FAILURE); + if ((a == NULL) || (*a != ret)) + ASN1_INTEGER_free(ret); + return NULL; +} + +static int asn1_string_get_int64(int64_t *pr, const ASN1_STRING *a, int itype) +{ + if (a == NULL) { + ASN1err(ASN1_F_ASN1_STRING_GET_INT64, ERR_R_PASSED_NULL_PARAMETER); + return 0; + } + if ((a->type & ~V_ASN1_NEG) != itype) { + ASN1err(ASN1_F_ASN1_STRING_GET_INT64, ASN1_R_WRONG_INTEGER_TYPE); + return 0; + } + return asn1_get_int64(pr, a->data, a->length, a->type & V_ASN1_NEG); +} + +static int asn1_string_set_int64(ASN1_STRING *a, int64_t r, int itype) +{ + unsigned char tbuf[sizeof(r)]; + size_t off; + + a->type = itype; + if (r < 0) { + /* Most obvious '-r' triggers undefined behaviour for most + * common INT64_MIN. Even though below '0 - (uint64_t)r' can + * appear two's-complement centric, it does produce correct/ + * expected result even on one's-complement. This is because + * cast to unsigned has to change bit pattern... */ + off = asn1_put_uint64(tbuf, 0 - (uint64_t)r); + a->type |= V_ASN1_NEG; + } else { + off = asn1_put_uint64(tbuf, r); + a->type &= ~V_ASN1_NEG; + } + return ASN1_STRING_set(a, tbuf + off, sizeof(tbuf) - off); +} + +static int asn1_string_get_uint64(uint64_t *pr, const ASN1_STRING *a, + int itype) +{ + if (a == NULL) { + ASN1err(ASN1_F_ASN1_STRING_GET_UINT64, ERR_R_PASSED_NULL_PARAMETER); + return 0; + } + if ((a->type & ~V_ASN1_NEG) != itype) { + ASN1err(ASN1_F_ASN1_STRING_GET_UINT64, ASN1_R_WRONG_INTEGER_TYPE); + return 0; + } + if (a->type & V_ASN1_NEG) { + ASN1err(ASN1_F_ASN1_STRING_GET_UINT64, ASN1_R_ILLEGAL_NEGATIVE_VALUE); + return 0; + } + return asn1_get_uint64(pr, a->data, a->length); +} + +static int asn1_string_set_uint64(ASN1_STRING *a, uint64_t r, int itype) +{ + unsigned char tbuf[sizeof(r)]; + size_t off; + + a->type = itype; + off = asn1_put_uint64(tbuf, r); + return ASN1_STRING_set(a, tbuf + off, sizeof(tbuf) - off); +} + +/* + * This is a version of d2i_ASN1_INTEGER that ignores the sign bit of ASN1 + * integers: some broken software can encode a positive INTEGER with its MSB + * set as negative (it doesn't add a padding zero). + */ + +ASN1_INTEGER *d2i_ASN1_UINTEGER(ASN1_INTEGER **a, const unsigned char **pp, + long length) +{ + ASN1_INTEGER *ret = NULL; + const unsigned char *p; + unsigned char *s; + long len; + int inf, tag, xclass; + int i; + + if ((a == NULL) || ((*a) == NULL)) { + if ((ret = ASN1_INTEGER_new()) == NULL) + return (NULL); + ret->type = V_ASN1_INTEGER; + } else + ret = (*a); + + p = *pp; + inf = ASN1_get_object(&p, &len, &tag, &xclass, length); + if (inf & 0x80) { + i = ASN1_R_BAD_OBJECT_HEADER; + goto err; + } + + if (tag != V_ASN1_INTEGER) { + i = ASN1_R_EXPECTING_AN_INTEGER; + goto err; + } + + /* + * We must OPENSSL_malloc stuff, even for 0 bytes otherwise it signifies + * a missing NULL parameter. + */ + s = OPENSSL_malloc((int)len + 1); + if (s == NULL) { + i = ERR_R_MALLOC_FAILURE; + goto err; + } + ret->type = V_ASN1_INTEGER; + if (len) { + if ((*p == 0) && (len != 1)) { + p++; + len--; + } + memcpy(s, p, (int)len); + p += len; + } + + OPENSSL_free(ret->data); + ret->data = s; + ret->length = (int)len; + if (a != NULL) + (*a) = ret; + *pp = p; + return (ret); + err: + ASN1err(ASN1_F_D2I_ASN1_UINTEGER, i); + if ((a == NULL) || (*a != ret)) + ASN1_INTEGER_free(ret); + return (NULL); +} + +static ASN1_STRING *bn_to_asn1_string(const BIGNUM *bn, ASN1_STRING *ai, + int atype) +{ + ASN1_INTEGER *ret; + int len; + + if (ai == NULL) { + ret = ASN1_STRING_type_new(atype); + } else { + ret = ai; + ret->type = atype; + } + + if (ret == NULL) { + ASN1err(ASN1_F_BN_TO_ASN1_STRING, ERR_R_NESTED_ASN1_ERROR); + goto err; + } + + if (BN_is_negative(bn) && !BN_is_zero(bn)) + ret->type |= V_ASN1_NEG_INTEGER; + + len = BN_num_bytes(bn); + + if (len == 0) + len = 1; + + if (ASN1_STRING_set(ret, NULL, len) == 0) { + ASN1err(ASN1_F_BN_TO_ASN1_STRING, ERR_R_MALLOC_FAILURE); + goto err; + } + + /* Correct zero case */ + if (BN_is_zero(bn)) + ret->data[0] = 0; + else + len = BN_bn2bin(bn, ret->data); + ret->length = len; + return ret; + err: + if (ret != ai) + ASN1_INTEGER_free(ret); + return (NULL); +} + +static BIGNUM *asn1_string_to_bn(const ASN1_INTEGER *ai, BIGNUM *bn, + int itype) +{ + BIGNUM *ret; + + if ((ai->type & ~V_ASN1_NEG) != itype) { + ASN1err(ASN1_F_ASN1_STRING_TO_BN, ASN1_R_WRONG_INTEGER_TYPE); + return NULL; + } + + ret = BN_bin2bn(ai->data, ai->length, bn); + if (ret == NULL) { + ASN1err(ASN1_F_ASN1_STRING_TO_BN, ASN1_R_BN_LIB); + return NULL; + } + if (ai->type & V_ASN1_NEG) + BN_set_negative(ret, 1); + return ret; +} + +int ASN1_INTEGER_get_int64(int64_t *pr, const ASN1_INTEGER *a) +{ + return asn1_string_get_int64(pr, a, V_ASN1_INTEGER); +} + +int ASN1_INTEGER_set_int64(ASN1_INTEGER *a, int64_t r) +{ + return asn1_string_set_int64(a, r, V_ASN1_INTEGER); +} + +int ASN1_INTEGER_get_uint64(uint64_t *pr, const ASN1_INTEGER *a) +{ + return asn1_string_get_uint64(pr, a, V_ASN1_INTEGER); +} + +int ASN1_INTEGER_set_uint64(ASN1_INTEGER *a, uint64_t r) +{ + return asn1_string_set_uint64(a, r, V_ASN1_INTEGER); +} + +int ASN1_INTEGER_set(ASN1_INTEGER *a, long v) +{ + return ASN1_INTEGER_set_int64(a, v); +} + +long ASN1_INTEGER_get(const ASN1_INTEGER *a) +{ + int i; + int64_t r; + if (a == NULL) + return 0; + i = ASN1_INTEGER_get_int64(&r, a); + if (i == 0) + return -1; + if (r > LONG_MAX || r < LONG_MIN) + return -1; + return (long)r; +} + +ASN1_INTEGER *BN_to_ASN1_INTEGER(const BIGNUM *bn, ASN1_INTEGER *ai) +{ + return bn_to_asn1_string(bn, ai, V_ASN1_INTEGER); +} + +BIGNUM *ASN1_INTEGER_to_BN(const ASN1_INTEGER *ai, BIGNUM *bn) +{ + return asn1_string_to_bn(ai, bn, V_ASN1_INTEGER); +} + +int ASN1_ENUMERATED_get_int64(int64_t *pr, const ASN1_ENUMERATED *a) +{ + return asn1_string_get_int64(pr, a, V_ASN1_ENUMERATED); +} + +int ASN1_ENUMERATED_set_int64(ASN1_ENUMERATED *a, int64_t r) +{ + return asn1_string_set_int64(a, r, V_ASN1_ENUMERATED); +} + +int ASN1_ENUMERATED_set(ASN1_ENUMERATED *a, long v) +{ + return ASN1_ENUMERATED_set_int64(a, v); +} + +long ASN1_ENUMERATED_get(const ASN1_ENUMERATED *a) +{ + int i; + int64_t r; + if (a == NULL) + return 0; + if ((a->type & ~V_ASN1_NEG) != V_ASN1_ENUMERATED) + return -1; + if (a->length > (int)sizeof(long)) + return 0xffffffffL; + i = ASN1_ENUMERATED_get_int64(&r, a); + if (i == 0) + return -1; + if (r > LONG_MAX || r < LONG_MIN) + return -1; + return (long)r; +} + +ASN1_ENUMERATED *BN_to_ASN1_ENUMERATED(const BIGNUM *bn, ASN1_ENUMERATED *ai) +{ + return bn_to_asn1_string(bn, ai, V_ASN1_ENUMERATED); +} + +BIGNUM *ASN1_ENUMERATED_to_BN(const ASN1_ENUMERATED *ai, BIGNUM *bn) +{ + return asn1_string_to_bn(ai, bn, V_ASN1_ENUMERATED); +} + +/* Internal functions used by x_int64.c */ +int c2i_uint64_int(uint64_t *ret, int *neg, const unsigned char **pp, long len) +{ + unsigned char buf[sizeof(uint64_t)]; + size_t buflen; + + buflen = c2i_ibuf(NULL, NULL, *pp, len); + if (buflen == 0) + return 0; + if (buflen > sizeof(uint64_t)) { + ASN1err(ASN1_F_C2I_UINT64_INT, ASN1_R_TOO_LARGE); + return 0; + } + (void)c2i_ibuf(buf, neg, *pp, len); + return asn1_get_uint64(ret, buf, buflen); +} + +int i2c_uint64_int(unsigned char *p, uint64_t r, int neg) +{ + unsigned char buf[sizeof(uint64_t)]; + size_t off; + + off = asn1_put_uint64(buf, r); + return i2c_ibuf(buf + off, sizeof(buf) - off, neg, &p); +} + -- cgit v1.2.3