From aa4d426b4d3527d7e166df1a05058c9a4a0f6683 Mon Sep 17 00:00:00 2001 From: Wojtek Kosior Date: Fri, 30 Apr 2021 00:33:56 +0200 Subject: initial/final commit --- openssl-1.1.0h/apps/speed.c | 3149 +++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 3149 insertions(+) create mode 100644 openssl-1.1.0h/apps/speed.c (limited to 'openssl-1.1.0h/apps/speed.c') diff --git a/openssl-1.1.0h/apps/speed.c b/openssl-1.1.0h/apps/speed.c new file mode 100644 index 0000000..b0a7b6e --- /dev/null +++ b/openssl-1.1.0h/apps/speed.c @@ -0,0 +1,3149 @@ +/* + * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. + * + * Licensed under the OpenSSL license (the "License"). You may not use + * this file except in compliance with the License. You can obtain a copy + * in the file LICENSE in the source distribution or at + * https://www.openssl.org/source/license.html + */ + +/* ==================================================================== + * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. + * + * Portions of the attached software ("Contribution") are developed by + * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. + * + * The Contribution is licensed pursuant to the OpenSSL open source + * license provided above. + * + * The ECDH and ECDSA speed test software is originally written by + * Sumit Gupta of Sun Microsystems Laboratories. + * + */ + +#undef SECONDS +#define SECONDS 3 +#define PRIME_SECONDS 10 +#define RSA_SECONDS 10 +#define DSA_SECONDS 10 +#define ECDSA_SECONDS 10 +#define ECDH_SECONDS 10 + +#include +#include +#include +#include +#include "apps.h" +#include +#include +#include +#include +#include +#include +#if !defined(OPENSSL_SYS_MSDOS) +# include OPENSSL_UNISTD +#endif + +#if defined(_WIN32) +# include +#endif + +#include +#ifndef OPENSSL_NO_DES +# include +#endif +#include +#ifndef OPENSSL_NO_CAMELLIA +# include +#endif +#ifndef OPENSSL_NO_MD2 +# include +#endif +#ifndef OPENSSL_NO_MDC2 +# include +#endif +#ifndef OPENSSL_NO_MD4 +# include +#endif +#ifndef OPENSSL_NO_MD5 +# include +#endif +#include +#include +#ifndef OPENSSL_NO_RMD160 +# include +#endif +#ifndef OPENSSL_NO_WHIRLPOOL +# include +#endif +#ifndef OPENSSL_NO_RC4 +# include +#endif +#ifndef OPENSSL_NO_RC5 +# include +#endif +#ifndef OPENSSL_NO_RC2 +# include +#endif +#ifndef OPENSSL_NO_IDEA +# include +#endif +#ifndef OPENSSL_NO_SEED +# include +#endif +#ifndef OPENSSL_NO_BF +# include +#endif +#ifndef OPENSSL_NO_CAST +# include +#endif +#ifndef OPENSSL_NO_RSA +# include +# include "./testrsa.h" +#endif +#include +#ifndef OPENSSL_NO_DSA +# include +# include "./testdsa.h" +#endif +#ifndef OPENSSL_NO_EC +# include +#endif +#include + +#ifndef HAVE_FORK +# if defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_WINDOWS) +# define HAVE_FORK 0 +# else +# define HAVE_FORK 1 +# endif +#endif + +#if HAVE_FORK +# undef NO_FORK +#else +# define NO_FORK +#endif + +#undef BUFSIZE +#define BUFSIZE (1024*16+1) +#define MAX_MISALIGNMENT 63 + +#define ALGOR_NUM 30 +#define SIZE_NUM 6 +#define PRIME_NUM 3 +#define RSA_NUM 7 +#define DSA_NUM 3 + +#define EC_NUM 17 +#define MAX_ECDH_SIZE 256 +#define MISALIGN 64 + +static volatile int run = 0; + +static int mr = 0; +static int usertime = 1; + +typedef void *(*kdf_fn) ( + const void *in, size_t inlen, void *out, size_t *xoutlen); + +typedef struct loopargs_st { + ASYNC_JOB *inprogress_job; + ASYNC_WAIT_CTX *wait_ctx; + unsigned char *buf; + unsigned char *buf2; + unsigned char *buf_malloc; + unsigned char *buf2_malloc; + unsigned int siglen; +#ifndef OPENSSL_NO_RSA + RSA *rsa_key[RSA_NUM]; +#endif +#ifndef OPENSSL_NO_DSA + DSA *dsa_key[DSA_NUM]; +#endif +#ifndef OPENSSL_NO_EC + EC_KEY *ecdsa[EC_NUM]; + EC_KEY *ecdh_a[EC_NUM]; + EC_KEY *ecdh_b[EC_NUM]; + unsigned char *secret_a; + unsigned char *secret_b; + size_t outlen; + kdf_fn kdf; +#endif + EVP_CIPHER_CTX *ctx; + HMAC_CTX *hctx; + GCM128_CONTEXT *gcm_ctx; +} loopargs_t; + +#ifndef OPENSSL_NO_MD2 +static int EVP_Digest_MD2_loop(void *args); +#endif + +#ifndef OPENSSL_NO_MDC2 +static int EVP_Digest_MDC2_loop(void *args); +#endif +#ifndef OPENSSL_NO_MD4 +static int EVP_Digest_MD4_loop(void *args); +#endif +#ifndef OPENSSL_NO_MD5 +static int MD5_loop(void *args); +static int HMAC_loop(void *args); +#endif +static int SHA1_loop(void *args); +static int SHA256_loop(void *args); +static int SHA512_loop(void *args); +#ifndef OPENSSL_NO_WHIRLPOOL +static int WHIRLPOOL_loop(void *args); +#endif +#ifndef OPENSSL_NO_RMD160 +static int EVP_Digest_RMD160_loop(void *args); +#endif +#ifndef OPENSSL_NO_RC4 +static int RC4_loop(void *args); +#endif +#ifndef OPENSSL_NO_DES +static int DES_ncbc_encrypt_loop(void *args); +static int DES_ede3_cbc_encrypt_loop(void *args); +#endif +static int AES_cbc_128_encrypt_loop(void *args); +static int AES_cbc_192_encrypt_loop(void *args); +static int AES_ige_128_encrypt_loop(void *args); +static int AES_cbc_256_encrypt_loop(void *args); +static int AES_ige_192_encrypt_loop(void *args); +static int AES_ige_256_encrypt_loop(void *args); +static int CRYPTO_gcm128_aad_loop(void *args); +static int EVP_Update_loop(void *args); +static int EVP_Digest_loop(void *args); +#ifndef OPENSSL_NO_RSA +static int RSA_sign_loop(void *args); +static int RSA_verify_loop(void *args); +#endif +#ifndef OPENSSL_NO_DSA +static int DSA_sign_loop(void *args); +static int DSA_verify_loop(void *args); +#endif +#ifndef OPENSSL_NO_EC +static int ECDSA_sign_loop(void *args); +static int ECDSA_verify_loop(void *args); +static int ECDH_compute_key_loop(void *args); +#endif +static int run_benchmark(int async_jobs, int (*loop_function)(void *), loopargs_t *loopargs); + +static double Time_F(int s); +static void print_message(const char *s, long num, int length); +static void pkey_print_message(const char *str, const char *str2, + long num, int bits, int sec); +static void print_result(int alg, int run_no, int count, double time_used); +#ifndef NO_FORK +static int do_multi(int multi); +#endif + +static const char *names[ALGOR_NUM] = { + "md2", "mdc2", "md4", "md5", "hmac(md5)", "sha1", "rmd160", "rc4", + "des cbc", "des ede3", "idea cbc", "seed cbc", + "rc2 cbc", "rc5-32/12 cbc", "blowfish cbc", "cast cbc", + "aes-128 cbc", "aes-192 cbc", "aes-256 cbc", + "camellia-128 cbc", "camellia-192 cbc", "camellia-256 cbc", + "evp", "sha256", "sha512", "whirlpool", + "aes-128 ige", "aes-192 ige", "aes-256 ige", "ghash" +}; + +static double results[ALGOR_NUM][SIZE_NUM]; + +static const int lengths[SIZE_NUM] = { + 16, 64, 256, 1024, 8 * 1024, 16 * 1024 +}; + +#ifndef OPENSSL_NO_RSA +static double rsa_results[RSA_NUM][2]; +#endif +#ifndef OPENSSL_NO_DSA +static double dsa_results[DSA_NUM][2]; +#endif +#ifndef OPENSSL_NO_EC +static double ecdsa_results[EC_NUM][2]; +static double ecdh_results[EC_NUM][1]; +#endif + +#if !defined(OPENSSL_NO_DSA) || !defined(OPENSSL_NO_EC) +static const char rnd_seed[] = + "string to make the random number generator think it has entropy"; +#endif + +#ifdef SIGALRM +# if defined(__STDC__) || defined(sgi) || defined(_AIX) +# define SIGRETTYPE void +# else +# define SIGRETTYPE int +# endif + +static SIGRETTYPE sig_done(int sig); +static SIGRETTYPE sig_done(int sig) +{ + signal(SIGALRM, sig_done); + run = 0; +} +#endif + +#define START 0 +#define STOP 1 + +#if defined(_WIN32) + +# if !defined(SIGALRM) +# define SIGALRM +# endif +static unsigned int lapse; +static volatile unsigned int schlock; +static void alarm_win32(unsigned int secs) +{ + lapse = secs * 1000; +} + +# define alarm alarm_win32 + +static DWORD WINAPI sleepy(VOID * arg) +{ + schlock = 1; + Sleep(lapse); + run = 0; + return 0; +} + +static double Time_F(int s) +{ + double ret; + static HANDLE thr; + + if (s == START) { + schlock = 0; + thr = CreateThread(NULL, 4096, sleepy, NULL, 0, NULL); + if (thr == NULL) { + DWORD err = GetLastError(); + BIO_printf(bio_err, "unable to CreateThread (%lu)", err); + ExitProcess(err); + } + while (!schlock) + Sleep(0); /* scheduler spinlock */ + ret = app_tminterval(s, usertime); + } else { + ret = app_tminterval(s, usertime); + if (run) + TerminateThread(thr, 0); + CloseHandle(thr); + } + + return ret; +} +#else + +static double Time_F(int s) +{ + double ret = app_tminterval(s, usertime); + if (s == STOP) + alarm(0); + return ret; +} +#endif + +static void multiblock_speed(const EVP_CIPHER *evp_cipher); + +static int found(const char *name, const OPT_PAIR *pairs, int *result) +{ + for (; pairs->name; pairs++) + if (strcmp(name, pairs->name) == 0) { + *result = pairs->retval; + return 1; + } + return 0; +} + +typedef enum OPTION_choice { + OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, + OPT_ELAPSED, OPT_EVP, OPT_DECRYPT, OPT_ENGINE, OPT_MULTI, + OPT_MR, OPT_MB, OPT_MISALIGN, OPT_ASYNCJOBS +} OPTION_CHOICE; + +OPTIONS speed_options[] = { + {OPT_HELP_STR, 1, '-', "Usage: %s [options] ciphers...\n"}, + {OPT_HELP_STR, 1, '-', "Valid options are:\n"}, + {"help", OPT_HELP, '-', "Display this summary"}, + {"evp", OPT_EVP, 's', "Use specified EVP cipher"}, + {"decrypt", OPT_DECRYPT, '-', + "Time decryption instead of encryption (only EVP)"}, + {"mr", OPT_MR, '-', "Produce machine readable output"}, + {"mb", OPT_MB, '-', + "Enable (tls1.1) multi-block mode on evp_cipher requested with -evp"}, + {"misalign", OPT_MISALIGN, 'n', "Amount to mis-align buffers"}, + {"elapsed", OPT_ELAPSED, '-', + "Measure time in real time instead of CPU user time"}, +#ifndef NO_FORK + {"multi", OPT_MULTI, 'p', "Run benchmarks in parallel"}, +#endif +#ifndef OPENSSL_NO_ASYNC + {"async_jobs", OPT_ASYNCJOBS, 'p', + "Enable async mode and start pnum jobs"}, +#endif +#ifndef OPENSSL_NO_ENGINE + {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"}, +#endif + {NULL}, +}; + +#define D_MD2 0 +#define D_MDC2 1 +#define D_MD4 2 +#define D_MD5 3 +#define D_HMAC 4 +#define D_SHA1 5 +#define D_RMD160 6 +#define D_RC4 7 +#define D_CBC_DES 8 +#define D_EDE3_DES 9 +#define D_CBC_IDEA 10 +#define D_CBC_SEED 11 +#define D_CBC_RC2 12 +#define D_CBC_RC5 13 +#define D_CBC_BF 14 +#define D_CBC_CAST 15 +#define D_CBC_128_AES 16 +#define D_CBC_192_AES 17 +#define D_CBC_256_AES 18 +#define D_CBC_128_CML 19 +#define D_CBC_192_CML 20 +#define D_CBC_256_CML 21 +#define D_EVP 22 +#define D_SHA256 23 +#define D_SHA512 24 +#define D_WHIRLPOOL 25 +#define D_IGE_128_AES 26 +#define D_IGE_192_AES 27 +#define D_IGE_256_AES 28 +#define D_GHASH 29 +static OPT_PAIR doit_choices[] = { +#ifndef OPENSSL_NO_MD2 + {"md2", D_MD2}, +#endif +#ifndef OPENSSL_NO_MDC2 + {"mdc2", D_MDC2}, +#endif +#ifndef OPENSSL_NO_MD4 + {"md4", D_MD4}, +#endif +#ifndef OPENSSL_NO_MD5 + {"md5", D_MD5}, + {"hmac", D_HMAC}, +#endif + {"sha1", D_SHA1}, + {"sha256", D_SHA256}, + {"sha512", D_SHA512}, +#ifndef OPENSSL_NO_WHIRLPOOL + {"whirlpool", D_WHIRLPOOL}, +#endif +#ifndef OPENSSL_NO_RMD160 + {"ripemd", D_RMD160}, + {"rmd160", D_RMD160}, + {"ripemd160", D_RMD160}, +#endif +#ifndef OPENSSL_NO_RC4 + {"rc4", D_RC4}, +#endif +#ifndef OPENSSL_NO_DES + {"des-cbc", D_CBC_DES}, + {"des-ede3", D_EDE3_DES}, +#endif + {"aes-128-cbc", D_CBC_128_AES}, + {"aes-192-cbc", D_CBC_192_AES}, + {"aes-256-cbc", D_CBC_256_AES}, + {"aes-128-ige", D_IGE_128_AES}, + {"aes-192-ige", D_IGE_192_AES}, + {"aes-256-ige", D_IGE_256_AES}, +#ifndef OPENSSL_NO_RC2 + {"rc2-cbc", D_CBC_RC2}, + {"rc2", D_CBC_RC2}, +#endif +#ifndef OPENSSL_NO_RC5 + {"rc5-cbc", D_CBC_RC5}, + {"rc5", D_CBC_RC5}, +#endif +#ifndef OPENSSL_NO_IDEA + {"idea-cbc", D_CBC_IDEA}, + {"idea", D_CBC_IDEA}, +#endif +#ifndef OPENSSL_NO_SEED + {"seed-cbc", D_CBC_SEED}, + {"seed", D_CBC_SEED}, +#endif +#ifndef OPENSSL_NO_BF + {"bf-cbc", D_CBC_BF}, + {"blowfish", D_CBC_BF}, + {"bf", D_CBC_BF}, +#endif +#ifndef OPENSSL_NO_CAST + {"cast-cbc", D_CBC_CAST}, + {"cast", D_CBC_CAST}, + {"cast5", D_CBC_CAST}, +#endif + {"ghash", D_GHASH}, + {NULL} +}; + +#ifndef OPENSSL_NO_DSA +# define R_DSA_512 0 +# define R_DSA_1024 1 +# define R_DSA_2048 2 +static OPT_PAIR dsa_choices[] = { + {"dsa512", R_DSA_512}, + {"dsa1024", R_DSA_1024}, + {"dsa2048", R_DSA_2048}, + {NULL}, +}; +#endif + +#define R_RSA_512 0 +#define R_RSA_1024 1 +#define R_RSA_2048 2 +#define R_RSA_3072 3 +#define R_RSA_4096 4 +#define R_RSA_7680 5 +#define R_RSA_15360 6 +static OPT_PAIR rsa_choices[] = { + {"rsa512", R_RSA_512}, + {"rsa1024", R_RSA_1024}, + {"rsa2048", R_RSA_2048}, + {"rsa3072", R_RSA_3072}, + {"rsa4096", R_RSA_4096}, + {"rsa7680", R_RSA_7680}, + {"rsa15360", R_RSA_15360}, + {NULL} +}; + +#define R_EC_P160 0 +#define R_EC_P192 1 +#define R_EC_P224 2 +#define R_EC_P256 3 +#define R_EC_P384 4 +#define R_EC_P521 5 +#define R_EC_K163 6 +#define R_EC_K233 7 +#define R_EC_K283 8 +#define R_EC_K409 9 +#define R_EC_K571 10 +#define R_EC_B163 11 +#define R_EC_B233 12 +#define R_EC_B283 13 +#define R_EC_B409 14 +#define R_EC_B571 15 +#define R_EC_X25519 16 +#ifndef OPENSSL_NO_EC +static OPT_PAIR ecdsa_choices[] = { + {"ecdsap160", R_EC_P160}, + {"ecdsap192", R_EC_P192}, + {"ecdsap224", R_EC_P224}, + {"ecdsap256", R_EC_P256}, + {"ecdsap384", R_EC_P384}, + {"ecdsap521", R_EC_P521}, + {"ecdsak163", R_EC_K163}, + {"ecdsak233", R_EC_K233}, + {"ecdsak283", R_EC_K283}, + {"ecdsak409", R_EC_K409}, + {"ecdsak571", R_EC_K571}, + {"ecdsab163", R_EC_B163}, + {"ecdsab233", R_EC_B233}, + {"ecdsab283", R_EC_B283}, + {"ecdsab409", R_EC_B409}, + {"ecdsab571", R_EC_B571}, + {NULL} +}; + +static OPT_PAIR ecdh_choices[] = { + {"ecdhp160", R_EC_P160}, + {"ecdhp192", R_EC_P192}, + {"ecdhp224", R_EC_P224}, + {"ecdhp256", R_EC_P256}, + {"ecdhp384", R_EC_P384}, + {"ecdhp521", R_EC_P521}, + {"ecdhk163", R_EC_K163}, + {"ecdhk233", R_EC_K233}, + {"ecdhk283", R_EC_K283}, + {"ecdhk409", R_EC_K409}, + {"ecdhk571", R_EC_K571}, + {"ecdhb163", R_EC_B163}, + {"ecdhb233", R_EC_B233}, + {"ecdhb283", R_EC_B283}, + {"ecdhb409", R_EC_B409}, + {"ecdhb571", R_EC_B571}, + {"ecdhx25519", R_EC_X25519}, + {NULL} +}; +#endif + +#ifndef SIGALRM +# define COND(d) (count < (d)) +# define COUNT(d) (d) +#else +# define COND(unused_cond) (run && count<0x7fffffff) +# define COUNT(d) (count) +#endif /* SIGALRM */ + +static int testnum; + +/* Nb of iterations to do per algorithm and key-size */ +static long c[ALGOR_NUM][SIZE_NUM]; + +#ifndef OPENSSL_NO_MD2 +static int EVP_Digest_MD2_loop(void *args) +{ + loopargs_t *tempargs = *(loopargs_t **)args; + unsigned char *buf = tempargs->buf; + unsigned char md2[MD2_DIGEST_LENGTH]; + int count; + + for (count = 0; COND(c[D_MD2][testnum]); count++) { + if (!EVP_Digest(buf, (size_t)lengths[testnum], md2, NULL, EVP_md2(), + NULL)) + return -1; + } + return count; +} +#endif + +#ifndef OPENSSL_NO_MDC2 +static int EVP_Digest_MDC2_loop(void *args) +{ + loopargs_t *tempargs = *(loopargs_t **)args; + unsigned char *buf = tempargs->buf; + unsigned char mdc2[MDC2_DIGEST_LENGTH]; + int count; + + for (count = 0; COND(c[D_MDC2][testnum]); count++) { + if (!EVP_Digest(buf, (size_t)lengths[testnum], mdc2, NULL, EVP_mdc2(), + NULL)) + return -1; + } + return count; +} +#endif + +#ifndef OPENSSL_NO_MD4 +static int EVP_Digest_MD4_loop(void *args) +{ + loopargs_t *tempargs = *(loopargs_t **)args; + unsigned char *buf = tempargs->buf; + unsigned char md4[MD4_DIGEST_LENGTH]; + int count; + + for (count = 0; COND(c[D_MD4][testnum]); count++) { + if (!EVP_Digest(buf, (size_t)lengths[testnum], md4, NULL, EVP_md4(), + NULL)) + return -1; + } + return count; +} +#endif + +#ifndef OPENSSL_NO_MD5 +static int MD5_loop(void *args) +{ + loopargs_t *tempargs = *(loopargs_t **)args; + unsigned char *buf = tempargs->buf; + unsigned char md5[MD5_DIGEST_LENGTH]; + int count; + for (count = 0; COND(c[D_MD5][testnum]); count++) + MD5(buf, lengths[testnum], md5); + return count; +} + +static int HMAC_loop(void *args) +{ + loopargs_t *tempargs = *(loopargs_t **)args; + unsigned char *buf = tempargs->buf; + HMAC_CTX *hctx = tempargs->hctx; + unsigned char hmac[MD5_DIGEST_LENGTH]; + int count; + + for (count = 0; COND(c[D_HMAC][testnum]); count++) { + HMAC_Init_ex(hctx, NULL, 0, NULL, NULL); + HMAC_Update(hctx, buf, lengths[testnum]); + HMAC_Final(hctx, hmac, NULL); + } + return count; +} +#endif + +static int SHA1_loop(void *args) +{ + loopargs_t *tempargs = *(loopargs_t **)args; + unsigned char *buf = tempargs->buf; + unsigned char sha[SHA_DIGEST_LENGTH]; + int count; + for (count = 0; COND(c[D_SHA1][testnum]); count++) + SHA1(buf, lengths[testnum], sha); + return count; +} + +static int SHA256_loop(void *args) +{ + loopargs_t *tempargs = *(loopargs_t **)args; + unsigned char *buf = tempargs->buf; + unsigned char sha256[SHA256_DIGEST_LENGTH]; + int count; + for (count = 0; COND(c[D_SHA256][testnum]); count++) + SHA256(buf, lengths[testnum], sha256); + return count; +} + +static int SHA512_loop(void *args) +{ + loopargs_t *tempargs = *(loopargs_t **)args; + unsigned char *buf = tempargs->buf; + unsigned char sha512[SHA512_DIGEST_LENGTH]; + int count; + for (count = 0; COND(c[D_SHA512][testnum]); count++) + SHA512(buf, lengths[testnum], sha512); + return count; +} + +#ifndef OPENSSL_NO_WHIRLPOOL +static int WHIRLPOOL_loop(void *args) +{ + loopargs_t *tempargs = *(loopargs_t **)args; + unsigned char *buf = tempargs->buf; + unsigned char whirlpool[WHIRLPOOL_DIGEST_LENGTH]; + int count; + for (count = 0; COND(c[D_WHIRLPOOL][testnum]); count++) + WHIRLPOOL(buf, lengths[testnum], whirlpool); + return count; +} +#endif + +#ifndef OPENSSL_NO_RMD160 +static int EVP_Digest_RMD160_loop(void *args) +{ + loopargs_t *tempargs = *(loopargs_t **)args; + unsigned char *buf = tempargs->buf; + unsigned char rmd160[RIPEMD160_DIGEST_LENGTH]; + int count; + for (count = 0; COND(c[D_RMD160][testnum]); count++) { + if (!EVP_Digest(buf, (size_t)lengths[testnum], &(rmd160[0]), + NULL, EVP_ripemd160(), NULL)) + return -1; + } + return count; +} +#endif + +#ifndef OPENSSL_NO_RC4 +static RC4_KEY rc4_ks; +static int RC4_loop(void *args) +{ + loopargs_t *tempargs = *(loopargs_t **)args; + unsigned char *buf = tempargs->buf; + int count; + for (count = 0; COND(c[D_RC4][testnum]); count++) + RC4(&rc4_ks, (size_t)lengths[testnum], buf, buf); + return count; +} +#endif + +#ifndef OPENSSL_NO_DES +static unsigned char DES_iv[8]; +static DES_key_schedule sch; +static DES_key_schedule sch2; +static DES_key_schedule sch3; +static int DES_ncbc_encrypt_loop(void *args) +{ + loopargs_t *tempargs = *(loopargs_t **)args; + unsigned char *buf = tempargs->buf; + int count; + for (count = 0; COND(c[D_CBC_DES][testnum]); count++) + DES_ncbc_encrypt(buf, buf, lengths[testnum], &sch, + &DES_iv, DES_ENCRYPT); + return count; +} + +static int DES_ede3_cbc_encrypt_loop(void *args) +{ + loopargs_t *tempargs = *(loopargs_t **)args; + unsigned char *buf = tempargs->buf; + int count; + for (count = 0; COND(c[D_EDE3_DES][testnum]); count++) + DES_ede3_cbc_encrypt(buf, buf, lengths[testnum], + &sch, &sch2, &sch3, + &DES_iv, DES_ENCRYPT); + return count; +} +#endif + +#define MAX_BLOCK_SIZE 128 + +static unsigned char iv[2 * MAX_BLOCK_SIZE / 8]; +static AES_KEY aes_ks1, aes_ks2, aes_ks3; +static int AES_cbc_128_encrypt_loop(void *args) +{ + loopargs_t *tempargs = *(loopargs_t **)args; + unsigned char *buf = tempargs->buf; + int count; + for (count = 0; COND(c[D_CBC_128_AES][testnum]); count++) + AES_cbc_encrypt(buf, buf, + (size_t)lengths[testnum], &aes_ks1, + iv, AES_ENCRYPT); + return count; +} + +static int AES_cbc_192_encrypt_loop(void *args) +{ + loopargs_t *tempargs = *(loopargs_t **)args; + unsigned char *buf = tempargs->buf; + int count; + for (count = 0; COND(c[D_CBC_192_AES][testnum]); count++) + AES_cbc_encrypt(buf, buf, + (size_t)lengths[testnum], &aes_ks2, + iv, AES_ENCRYPT); + return count; +} + +static int AES_cbc_256_encrypt_loop(void *args) +{ + loopargs_t *tempargs = *(loopargs_t **)args; + unsigned char *buf = tempargs->buf; + int count; + for (count = 0; COND(c[D_CBC_256_AES][testnum]); count++) + AES_cbc_encrypt(buf, buf, + (size_t)lengths[testnum], &aes_ks3, + iv, AES_ENCRYPT); + return count; +} + +static int AES_ige_128_encrypt_loop(void *args) +{ + loopargs_t *tempargs = *(loopargs_t **)args; + unsigned char *buf = tempargs->buf; + unsigned char *buf2 = tempargs->buf2; + int count; + for (count = 0; COND(c[D_IGE_128_AES][testnum]); count++) + AES_ige_encrypt(buf, buf2, + (size_t)lengths[testnum], &aes_ks1, + iv, AES_ENCRYPT); + return count; +} + +static int AES_ige_192_encrypt_loop(void *args) +{ + loopargs_t *tempargs = *(loopargs_t **)args; + unsigned char *buf = tempargs->buf; + unsigned char *buf2 = tempargs->buf2; + int count; + for (count = 0; COND(c[D_IGE_192_AES][testnum]); count++) + AES_ige_encrypt(buf, buf2, + (size_t)lengths[testnum], &aes_ks2, + iv, AES_ENCRYPT); + return count; +} + +static int AES_ige_256_encrypt_loop(void *args) +{ + loopargs_t *tempargs = *(loopargs_t **)args; + unsigned char *buf = tempargs->buf; + unsigned char *buf2 = tempargs->buf2; + int count; + for (count = 0; COND(c[D_IGE_256_AES][testnum]); count++) + AES_ige_encrypt(buf, buf2, + (size_t)lengths[testnum], &aes_ks3, + iv, AES_ENCRYPT); + return count; +} + +static int CRYPTO_gcm128_aad_loop(void *args) +{ + loopargs_t *tempargs = *(loopargs_t **)args; + unsigned char *buf = tempargs->buf; + GCM128_CONTEXT *gcm_ctx = tempargs->gcm_ctx; + int count; + for (count = 0; COND(c[D_GHASH][testnum]); count++) + CRYPTO_gcm128_aad(gcm_ctx, buf, lengths[testnum]); + return count; +} + +static long save_count = 0; +static int decrypt = 0; +static int EVP_Update_loop(void *args) +{ + loopargs_t *tempargs = *(loopargs_t **)args; + unsigned char *buf = tempargs->buf; + EVP_CIPHER_CTX *ctx = tempargs->ctx; + int outl, count; +#ifndef SIGALRM + int nb_iter = save_count * 4 * lengths[0] / lengths[testnum]; +#endif + if (decrypt) + for (count = 0; COND(nb_iter); count++) + EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]); + else + for (count = 0; COND(nb_iter); count++) + EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]); + if (decrypt) + EVP_DecryptFinal_ex(ctx, buf, &outl); + else + EVP_EncryptFinal_ex(ctx, buf, &outl); + return count; +} + +static const EVP_MD *evp_md = NULL; +static int EVP_Digest_loop(void *args) +{ + loopargs_t *tempargs = *(loopargs_t **)args; + unsigned char *buf = tempargs->buf; + unsigned char md[EVP_MAX_MD_SIZE]; + int count; +#ifndef SIGALRM + int nb_iter = save_count * 4 * lengths[0] / lengths[testnum]; +#endif + + for (count = 0; COND(nb_iter); count++) { + if (!EVP_Digest(buf, lengths[testnum], md, NULL, evp_md, NULL)) + return -1; + } + return count; +} + +#ifndef OPENSSL_NO_RSA +static long rsa_c[RSA_NUM][2]; /* # RSA iteration test */ + +static int RSA_sign_loop(void *args) +{ + loopargs_t *tempargs = *(loopargs_t **)args; + unsigned char *buf = tempargs->buf; + unsigned char *buf2 = tempargs->buf2; + unsigned int *rsa_num = &tempargs->siglen; + RSA **rsa_key = tempargs->rsa_key; + int ret, count; + for (count = 0; COND(rsa_c[testnum][0]); count++) { + ret = RSA_sign(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[testnum]); + if (ret == 0) { + BIO_printf(bio_err, "RSA sign failure\n"); + ERR_print_errors(bio_err); + count = -1; + break; + } + } + return count; +} + +static int RSA_verify_loop(void *args) +{ + loopargs_t *tempargs = *(loopargs_t **)args; + unsigned char *buf = tempargs->buf; + unsigned char *buf2 = tempargs->buf2; + unsigned int rsa_num = tempargs->siglen; + RSA **rsa_key = tempargs->rsa_key; + int ret, count; + for (count = 0; COND(rsa_c[testnum][1]); count++) { + ret = RSA_verify(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[testnum]); + if (ret <= 0) { + BIO_printf(bio_err, "RSA verify failure\n"); + ERR_print_errors(bio_err); + count = -1; + break; + } + } + return count; +} +#endif + +#ifndef OPENSSL_NO_DSA +static long dsa_c[DSA_NUM][2]; +static int DSA_sign_loop(void *args) +{ + loopargs_t *tempargs = *(loopargs_t **)args; + unsigned char *buf = tempargs->buf; + unsigned char *buf2 = tempargs->buf2; + DSA **dsa_key = tempargs->dsa_key; + unsigned int *siglen = &tempargs->siglen; + int ret, count; + for (count = 0; COND(dsa_c[testnum][0]); count++) { + ret = DSA_sign(0, buf, 20, buf2, siglen, dsa_key[testnum]); + if (ret == 0) { + BIO_printf(bio_err, "DSA sign failure\n"); + ERR_print_errors(bio_err); + count = -1; + break; + } + } + return count; +} + +static int DSA_verify_loop(void *args) +{ + loopargs_t *tempargs = *(loopargs_t **)args; + unsigned char *buf = tempargs->buf; + unsigned char *buf2 = tempargs->buf2; + DSA **dsa_key = tempargs->dsa_key; + unsigned int siglen = tempargs->siglen; + int ret, count; + for (count = 0; COND(dsa_c[testnum][1]); count++) { + ret = DSA_verify(0, buf, 20, buf2, siglen, dsa_key[testnum]); + if (ret <= 0) { + BIO_printf(bio_err, "DSA verify failure\n"); + ERR_print_errors(bio_err); + count = -1; + break; + } + } + return count; +} +#endif + +#ifndef OPENSSL_NO_EC +static long ecdsa_c[EC_NUM][2]; +static int ECDSA_sign_loop(void *args) +{ + loopargs_t *tempargs = *(loopargs_t **)args; + unsigned char *buf = tempargs->buf; + EC_KEY **ecdsa = tempargs->ecdsa; + unsigned char *ecdsasig = tempargs->buf2; + unsigned int *ecdsasiglen = &tempargs->siglen; + int ret, count; + for (count = 0; COND(ecdsa_c[testnum][0]); count++) { + ret = ECDSA_sign(0, buf, 20, + ecdsasig, ecdsasiglen, ecdsa[testnum]); + if (ret == 0) { + BIO_printf(bio_err, "ECDSA sign failure\n"); + ERR_print_errors(bio_err); + count = -1; + break; + } + } + return count; +} + +static int ECDSA_verify_loop(void *args) +{ + loopargs_t *tempargs = *(loopargs_t **)args; + unsigned char *buf = tempargs->buf; + EC_KEY **ecdsa = tempargs->ecdsa; + unsigned char *ecdsasig = tempargs->buf2; + unsigned int ecdsasiglen = tempargs->siglen; + int ret, count; + for (count = 0; COND(ecdsa_c[testnum][1]); count++) { + ret = ECDSA_verify(0, buf, 20, ecdsasig, ecdsasiglen, + ecdsa[testnum]); + if (ret != 1) { + BIO_printf(bio_err, "ECDSA verify failure\n"); + ERR_print_errors(bio_err); + count = -1; + break; + } + } + return count; +} + +/* ******************************************************************** */ +static long ecdh_c[EC_NUM][1]; + +static int ECDH_compute_key_loop(void *args) +{ + loopargs_t *tempargs = *(loopargs_t **)args; + EC_KEY **ecdh_a = tempargs->ecdh_a; + EC_KEY **ecdh_b = tempargs->ecdh_b; + unsigned char *secret_a = tempargs->secret_a; + int count; + size_t outlen = tempargs->outlen; + kdf_fn kdf = tempargs->kdf; + + for (count = 0; COND(ecdh_c[testnum][0]); count++) { + ECDH_compute_key(secret_a, outlen, + EC_KEY_get0_public_key(ecdh_b[testnum]), + ecdh_a[testnum], kdf); + } + return count; +} + +static const size_t KDF1_SHA1_len = 20; +static void *KDF1_SHA1(const void *in, size_t inlen, void *out, + size_t *outlen) +{ + if (*outlen < SHA_DIGEST_LENGTH) + return NULL; + *outlen = SHA_DIGEST_LENGTH; + return SHA1(in, inlen, out); +} +#endif /* OPENSSL_NO_EC */ + +static int run_benchmark(int async_jobs, + int (*loop_function)(void *), loopargs_t *loopargs) +{ + int job_op_count = 0; + int total_op_count = 0; + int num_inprogress = 0; + int error = 0, i = 0, ret = 0; + OSSL_ASYNC_FD job_fd = 0; + size_t num_job_fds = 0; + + run = 1; + + if (async_jobs == 0) { + return loop_function((void *)&loopargs); + } + + for (i = 0; i < async_jobs && !error; i++) { + loopargs_t *looparg_item = loopargs + i; + + /* Copy pointer content (looparg_t item address) into async context */ + ret = ASYNC_start_job(&loopargs[i].inprogress_job, loopargs[i].wait_ctx, + &job_op_count, loop_function, + (void *)&looparg_item, sizeof(looparg_item)); + switch (ret) { + case ASYNC_PAUSE: + ++num_inprogress; + break; + case ASYNC_FINISH: + if (job_op_count == -1) { + error = 1; + } else { + total_op_count += job_op_count; + } + break; + case ASYNC_NO_JOBS: + case ASYNC_ERR: + BIO_printf(bio_err, "Failure in the job\n"); + ERR_print_errors(bio_err); + error = 1; + break; + } + } + + while (num_inprogress > 0) { +#if defined(OPENSSL_SYS_WINDOWS) + DWORD avail = 0; +#elif defined(OPENSSL_SYS_UNIX) + int select_result = 0; + OSSL_ASYNC_FD max_fd = 0; + fd_set waitfdset; + + FD_ZERO(&waitfdset); + + for (i = 0; i < async_jobs && num_inprogress > 0; i++) { + if (loopargs[i].inprogress_job == NULL) + continue; + + if (!ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, NULL, &num_job_fds) + || num_job_fds > 1) { + BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n"); + ERR_print_errors(bio_err); + error = 1; + break; + } + ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd, &num_job_fds); + FD_SET(job_fd, &waitfdset); + if (job_fd > max_fd) + max_fd = job_fd; + } + + if (max_fd >= (OSSL_ASYNC_FD)FD_SETSIZE) { + BIO_printf(bio_err, + "Error: max_fd (%d) must be smaller than FD_SETSIZE (%d). " + "Decrease the value of async_jobs\n", + max_fd, FD_SETSIZE); + ERR_print_errors(bio_err); + error = 1; + break; + } + + select_result = select(max_fd + 1, &waitfdset, NULL, NULL, NULL); + if (select_result == -1 && errno == EINTR) + continue; + + if (select_result == -1) { + BIO_printf(bio_err, "Failure in the select\n"); + ERR_print_errors(bio_err); + error = 1; + break; + } + + if (select_result == 0) + continue; +#endif + + for (i = 0; i < async_jobs; i++) { + if (loopargs[i].inprogress_job == NULL) + continue; + + if (!ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, NULL, &num_job_fds) + || num_job_fds > 1) { + BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n"); + ERR_print_errors(bio_err); + error = 1; + break; + } + ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd, &num_job_fds); + +#if defined(OPENSSL_SYS_UNIX) + if (num_job_fds == 1 && !FD_ISSET(job_fd, &waitfdset)) + continue; +#elif defined(OPENSSL_SYS_WINDOWS) + if (num_job_fds == 1 + && !PeekNamedPipe(job_fd, NULL, 0, NULL, &avail, NULL) + && avail > 0) + continue; +#endif + + ret = ASYNC_start_job(&loopargs[i].inprogress_job, + loopargs[i].wait_ctx, &job_op_count, loop_function, + (void *)(loopargs + i), sizeof(loopargs_t)); + switch (ret) { + case ASYNC_PAUSE: + break; + case ASYNC_FINISH: + if (job_op_count == -1) { + error = 1; + } else { + total_op_count += job_op_count; + } + --num_inprogress; + loopargs[i].inprogress_job = NULL; + break; + case ASYNC_NO_JOBS: + case ASYNC_ERR: + --num_inprogress; + loopargs[i].inprogress_job = NULL; + BIO_printf(bio_err, "Failure in the job\n"); + ERR_print_errors(bio_err); + error = 1; + break; + } + } + } + + return error ? -1 : total_op_count; +} + +int speed_main(int argc, char **argv) +{ + ENGINE *e = NULL; + loopargs_t *loopargs = NULL; + int async_init = 0; + int loopargs_len = 0; + char *prog; + const char *engine_id = NULL; + const EVP_CIPHER *evp_cipher = NULL; + double d = 0.0; + OPTION_CHOICE o; + int multiblock = 0, pr_header = 0; + int doit[ALGOR_NUM] = { 0 }; + int ret = 1, i, k, misalign = 0; + long count = 0; +#ifndef NO_FORK + int multi = 0; +#endif + unsigned int async_jobs = 0; +#if !defined(OPENSSL_NO_RSA) || !defined(OPENSSL_NO_DSA) \ + || !defined(OPENSSL_NO_EC) + long rsa_count = 1; +#endif + size_t loop; + + /* What follows are the buffers and key material. */ +#ifndef OPENSSL_NO_RC5 + RC5_32_KEY rc5_ks; +#endif +#ifndef OPENSSL_NO_RC2 + RC2_KEY rc2_ks; +#endif +#ifndef OPENSSL_NO_IDEA + IDEA_KEY_SCHEDULE idea_ks; +#endif +#ifndef OPENSSL_NO_SEED + SEED_KEY_SCHEDULE seed_ks; +#endif +#ifndef OPENSSL_NO_BF + BF_KEY bf_ks; +#endif +#ifndef OPENSSL_NO_CAST + CAST_KEY cast_ks; +#endif + static const unsigned char key16[16] = { + 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, + 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12 + }; + static const unsigned char key24[24] = { + 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, + 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, + 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34 + }; + static const unsigned char key32[32] = { + 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, + 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, + 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, + 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56 + }; +#ifndef OPENSSL_NO_CAMELLIA + static const unsigned char ckey24[24] = { + 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, + 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, + 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34 + }; + static const unsigned char ckey32[32] = { + 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, + 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, + 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, + 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56 + }; + CAMELLIA_KEY camellia_ks1, camellia_ks2, camellia_ks3; +#endif +#ifndef OPENSSL_NO_DES + static DES_cblock key = { + 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0 + }; + static DES_cblock key2 = { + 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12 + }; + static DES_cblock key3 = { + 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34 + }; +#endif +#ifndef OPENSSL_NO_RSA + static const unsigned int rsa_bits[RSA_NUM] = { + 512, 1024, 2048, 3072, 4096, 7680, 15360 + }; + static const unsigned char *rsa_data[RSA_NUM] = { + test512, test1024, test2048, test3072, test4096, test7680, test15360 + }; + static const int rsa_data_length[RSA_NUM] = { + sizeof(test512), sizeof(test1024), + sizeof(test2048), sizeof(test3072), + sizeof(test4096), sizeof(test7680), + sizeof(test15360) + }; + int rsa_doit[RSA_NUM] = { 0 }; +#endif +#ifndef OPENSSL_NO_DSA + static const unsigned int dsa_bits[DSA_NUM] = { 512, 1024, 2048 }; + int dsa_doit[DSA_NUM] = { 0 }; +#endif +#ifndef OPENSSL_NO_EC + /* + * We only test over the following curves as they are representative, To + * add tests over more curves, simply add the curve NID and curve name to + * the following arrays and increase the EC_NUM value accordingly. + */ + static const unsigned int test_curves[EC_NUM] = { + /* Prime Curves */ + NID_secp160r1, NID_X9_62_prime192v1, NID_secp224r1, + NID_X9_62_prime256v1, NID_secp384r1, NID_secp521r1, + /* Binary Curves */ + NID_sect163k1, NID_sect233k1, NID_sect283k1, + NID_sect409k1, NID_sect571k1, NID_sect163r2, + NID_sect233r1, NID_sect283r1, NID_sect409r1, + NID_sect571r1, + /* Other */ + NID_X25519 + }; + static const char *test_curves_names[EC_NUM] = { + /* Prime Curves */ + "secp160r1", "nistp192", "nistp224", + "nistp256", "nistp384", "nistp521", + /* Binary Curves */ + "nistk163", "nistk233", "nistk283", + "nistk409", "nistk571", "nistb163", + "nistb233", "nistb283", "nistb409", + "nistb571", + /* Other */ + "X25519" + }; + static const int test_curves_bits[EC_NUM] = { + 160, 192, 224, + 256, 384, 521, + 163, 233, 283, + 409, 571, 163, + 233, 283, 409, + 571, 253 /* X25519 */ + }; + + int ecdsa_doit[EC_NUM] = { 0 }; + int ecdh_doit[EC_NUM] = { 0 }; +#endif /* ndef OPENSSL_NO_EC */ + + prog = opt_init(argc, argv, speed_options); + while ((o = opt_next()) != OPT_EOF) { + switch (o) { + case OPT_EOF: + case OPT_ERR: + opterr: + BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); + goto end; + case OPT_HELP: + opt_help(speed_options); + ret = 0; + goto end; + case OPT_ELAPSED: + usertime = 0; + break; + case OPT_EVP: + evp_md = NULL; + evp_cipher = EVP_get_cipherbyname(opt_arg()); + if (evp_cipher == NULL) + evp_md = EVP_get_digestbyname(opt_arg()); + if (evp_cipher == NULL && evp_md == NULL) { + BIO_printf(bio_err, + "%s: %s is an unknown cipher or digest\n", + prog, opt_arg()); + goto end; + } + doit[D_EVP] = 1; + break; + case OPT_DECRYPT: + decrypt = 1; + break; + case OPT_ENGINE: + /* + * In a forked execution, an engine might need to be + * initialised by each child process, not by the parent. + * So store the name here and run setup_engine() later on. + */ + engine_id = opt_arg(); + break; + case OPT_MULTI: +#ifndef NO_FORK + multi = atoi(opt_arg()); +#endif + break; + case OPT_ASYNCJOBS: +#ifndef OPENSSL_NO_ASYNC + async_jobs = atoi(opt_arg()); + if (!ASYNC_is_capable()) { + BIO_printf(bio_err, + "%s: async_jobs specified but async not supported\n", + prog); + goto opterr; + } + if (async_jobs > 99999) { + BIO_printf(bio_err, + "%s: too many async_jobs\n", + prog); + goto opterr; + } +#endif + break; + case OPT_MISALIGN: + if (!opt_int(opt_arg(), &misalign)) + goto end; + if (misalign > MISALIGN) { + BIO_printf(bio_err, + "%s: Maximum offset is %d\n", prog, MISALIGN); + goto opterr; + } + break; + case OPT_MR: + mr = 1; + break; + case OPT_MB: + multiblock = 1; +#ifdef OPENSSL_NO_MULTIBLOCK + BIO_printf(bio_err, + "%s: -mb specified but multi-block support is disabled\n", + prog); + goto end; +#endif + break; + } + } + argc = opt_num_rest(); + argv = opt_rest(); + + /* Remaining arguments are algorithms. */ + for ( ; *argv; argv++) { + if (found(*argv, doit_choices, &i)) { + doit[i] = 1; + continue; + } +#ifndef OPENSSL_NO_DES + if (strcmp(*argv, "des") == 0) { + doit[D_CBC_DES] = doit[D_EDE3_DES] = 1; + continue; + } +#endif + if (strcmp(*argv, "sha") == 0) { + doit[D_SHA1] = doit[D_SHA256] = doit[D_SHA512] = 1; + continue; + } +#ifndef OPENSSL_NO_RSA + if (strcmp(*argv, "openssl") == 0) + continue; + if (strcmp(*argv, "rsa") == 0) { + rsa_doit[R_RSA_512] = rsa_doit[R_RSA_1024] = + rsa_doit[R_RSA_2048] = rsa_doit[R_RSA_3072] = + rsa_doit[R_RSA_4096] = rsa_doit[R_RSA_7680] = + rsa_doit[R_RSA_15360] = 1; + continue; + } + if (found(*argv, rsa_choices, &i)) { + rsa_doit[i] = 1; + continue; + } +#endif +#ifndef OPENSSL_NO_DSA + if (strcmp(*argv, "dsa") == 0) { + dsa_doit[R_DSA_512] = dsa_doit[R_DSA_1024] = + dsa_doit[R_DSA_2048] = 1; + continue; + } + if (found(*argv, dsa_choices, &i)) { + dsa_doit[i] = 2; + continue; + } +#endif + if (strcmp(*argv, "aes") == 0) { + doit[D_CBC_128_AES] = doit[D_CBC_192_AES] = + doit[D_CBC_256_AES] = 1; + continue; + } +#ifndef OPENSSL_NO_CAMELLIA + if (strcmp(*argv, "camellia") == 0) { + doit[D_CBC_128_CML] = doit[D_CBC_192_CML] = + doit[D_CBC_256_CML] = 1; + continue; + } +#endif +#ifndef OPENSSL_NO_EC + if (strcmp(*argv, "ecdsa") == 0) { + for (loop = 0; loop < OSSL_NELEM(ecdsa_choices); loop++) + ecdsa_doit[ecdsa_choices[loop].retval] = 1; + continue; + } + if (found(*argv, ecdsa_choices, &i)) { + ecdsa_doit[i] = 2; + continue; + } + if (strcmp(*argv, "ecdh") == 0) { + for (loop = 0; loop < OSSL_NELEM(ecdh_choices); loop++) + ecdh_doit[ecdh_choices[loop].retval] = 1; + continue; + } + if (found(*argv, ecdh_choices, &i)) { + ecdh_doit[i] = 2; + continue; + } +#endif + BIO_printf(bio_err, "%s: Unknown algorithm %s\n", prog, *argv); + goto end; + } + + /* Initialize the job pool if async mode is enabled */ + if (async_jobs > 0) { + async_init = ASYNC_init_thread(async_jobs, async_jobs); + if (!async_init) { + BIO_printf(bio_err, "Error creating the ASYNC job pool\n"); + goto end; + } + } + + loopargs_len = (async_jobs == 0 ? 1 : async_jobs); + loopargs = app_malloc(loopargs_len * sizeof(loopargs_t), "array of loopargs"); + memset(loopargs, 0, loopargs_len * sizeof(loopargs_t)); + + for (i = 0; i < loopargs_len; i++) { + if (async_jobs > 0) { + loopargs[i].wait_ctx = ASYNC_WAIT_CTX_new(); + if (loopargs[i].wait_ctx == NULL) { + BIO_printf(bio_err, "Error creating the ASYNC_WAIT_CTX\n"); + goto end; + } + } + + loopargs[i].buf_malloc = app_malloc((int)BUFSIZE + MAX_MISALIGNMENT + 1, "input buffer"); + loopargs[i].buf2_malloc = app_malloc((int)BUFSIZE + MAX_MISALIGNMENT + 1, "input buffer"); + /* Align the start of buffers on a 64 byte boundary */ + loopargs[i].buf = loopargs[i].buf_malloc + misalign; + loopargs[i].buf2 = loopargs[i].buf2_malloc + misalign; +#ifndef OPENSSL_NO_EC + loopargs[i].secret_a = app_malloc(MAX_ECDH_SIZE, "ECDH secret a"); + loopargs[i].secret_b = app_malloc(MAX_ECDH_SIZE, "ECDH secret b"); +#endif + } + +#ifndef NO_FORK + if (multi && do_multi(multi)) + goto show_res; +#endif + + /* Initialize the engine after the fork */ + e = setup_engine(engine_id, 0); + + /* No parameters; turn on everything. */ + if ((argc == 0) && !doit[D_EVP]) { + for (i = 0; i < ALGOR_NUM; i++) + if (i != D_EVP) + doit[i] = 1; +#ifndef OPENSSL_NO_RSA + for (i = 0; i < RSA_NUM; i++) + rsa_doit[i] = 1; +#endif +#ifndef OPENSSL_NO_DSA + for (i = 0; i < DSA_NUM; i++) + dsa_doit[i] = 1; +#endif +#ifndef OPENSSL_NO_EC + for (loop = 0; loop < OSSL_NELEM(ecdsa_choices); loop++) + ecdsa_doit[ecdsa_choices[loop].retval] = 1; + for (loop = 0; loop < OSSL_NELEM(ecdh_choices); loop++) + ecdh_doit[ecdh_choices[loop].retval] = 1; +#endif + } + for (i = 0; i < ALGOR_NUM; i++) + if (doit[i]) + pr_header++; + + if (usertime == 0 && !mr) + BIO_printf(bio_err, + "You have chosen to measure elapsed time " + "instead of user CPU time.\n"); + +#ifndef OPENSSL_NO_RSA + for (i = 0; i < loopargs_len; i++) { + for (k = 0; k < RSA_NUM; k++) { + const unsigned char *p; + + p = rsa_data[k]; + loopargs[i].rsa_key[k] = d2i_RSAPrivateKey(NULL, &p, rsa_data_length[k]); + if (loopargs[i].rsa_key[k] == NULL) { + BIO_printf(bio_err, "internal error loading RSA key number %d\n", + k); + goto end; + } + } + } +#endif +#ifndef OPENSSL_NO_DSA + for (i = 0; i < loopargs_len; i++) { + loopargs[i].dsa_key[0] = get_dsa512(); + loopargs[i].dsa_key[1] = get_dsa1024(); + loopargs[i].dsa_key[2] = get_dsa2048(); + } +#endif +#ifndef OPENSSL_NO_DES + DES_set_key_unchecked(&key, &sch); + DES_set_key_unchecked(&key2, &sch2); + DES_set_key_unchecked(&key3, &sch3); +#endif + AES_set_encrypt_key(key16, 128, &aes_ks1); + AES_set_encrypt_key(key24, 192, &aes_ks2); + AES_set_encrypt_key(key32, 256, &aes_ks3); +#ifndef OPENSSL_NO_CAMELLIA + Camellia_set_key(key16, 128, &camellia_ks1); + Camellia_set_key(ckey24, 192, &camellia_ks2); + Camellia_set_key(ckey32, 256, &camellia_ks3); +#endif +#ifndef OPENSSL_NO_IDEA + IDEA_set_encrypt_key(key16, &idea_ks); +#endif +#ifndef OPENSSL_NO_SEED + SEED_set_key(key16, &seed_ks); +#endif +#ifndef OPENSSL_NO_RC4 + RC4_set_key(&rc4_ks, 16, key16); +#endif +#ifndef OPENSSL_NO_RC2 + RC2_set_key(&rc2_ks, 16, key16, 128); +#endif +#ifndef OPENSSL_NO_RC5 + RC5_32_set_key(&rc5_ks, 16, key16, 12); +#endif +#ifndef OPENSSL_NO_BF + BF_set_key(&bf_ks, 16, key16); +#endif +#ifndef OPENSSL_NO_CAST + CAST_set_key(&cast_ks, 16, key16); +#endif +#ifndef SIGALRM +# ifndef OPENSSL_NO_DES + BIO_printf(bio_err, "First we calculate the approximate speed ...\n"); + count = 10; + do { + long it; + count *= 2; + Time_F(START); + for (it = count; it; it--) + DES_ecb_encrypt((DES_cblock *)loopargs[0].buf, + (DES_cblock *)loopargs[0].buf, &sch, DES_ENCRYPT); + d = Time_F(STOP); + } while (d < 3); + save_count = count; + c[D_MD2][0] = count / 10; + c[D_MDC2][0] = count / 10; + c[D_MD4][0] = count; + c[D_MD5][0] = count; + c[D_HMAC][0] = count; + c[D_SHA1][0] = count; + c[D_RMD160][0] = count; + c[D_RC4][0] = count * 5; + c[D_CBC_DES][0] = count; + c[D_EDE3_DES][0] = count / 3; + c[D_CBC_IDEA][0] = count; + c[D_CBC_SEED][0] = count; + c[D_CBC_RC2][0] = count; + c[D_CBC_RC5][0] = count; + c[D_CBC_BF][0] = count; + c[D_CBC_CAST][0] = count; + c[D_CBC_128_AES][0] = count; + c[D_CBC_192_AES][0] = count; + c[D_CBC_256_AES][0] = count; + c[D_CBC_128_CML][0] = count; + c[D_CBC_192_CML][0] = count; + c[D_CBC_256_CML][0] = count; + c[D_SHA256][0] = count; + c[D_SHA512][0] = count; + c[D_WHIRLPOOL][0] = count; + c[D_IGE_128_AES][0] = count; + c[D_IGE_192_AES][0] = count; + c[D_IGE_256_AES][0] = count; + c[D_GHASH][0] = count; + + for (i = 1; i < SIZE_NUM; i++) { + long l0, l1; + + l0 = (long)lengths[0]; + l1 = (long)lengths[i]; + + c[D_MD2][i] = c[D_MD2][0] * 4 * l0 / l1; + c[D_MDC2][i] = c[D_MDC2][0] * 4 * l0 / l1; + c[D_MD4][i] = c[D_MD4][0] * 4 * l0 / l1; + c[D_MD5][i] = c[D_MD5][0] * 4 * l0 / l1; + c[D_HMAC][i] = c[D_HMAC][0] * 4 * l0 / l1; + c[D_SHA1][i] = c[D_SHA1][0] * 4 * l0 / l1; + c[D_RMD160][i] = c[D_RMD160][0] * 4 * l0 / l1; + c[D_SHA256][i] = c[D_SHA256][0] * 4 * l0 / l1; + c[D_SHA512][i] = c[D_SHA512][0] * 4 * l0 / l1; + c[D_WHIRLPOOL][i] = c[D_WHIRLPOOL][0] * 4 * l0 / l1; + c[D_GHASH][i] = c[D_GHASH][0] * 4 * l0 / l1; + + l0 = (long)lengths[i - 1]; + + c[D_RC4][i] = c[D_RC4][i - 1] * l0 / l1; + c[D_CBC_DES][i] = c[D_CBC_DES][i - 1] * l0 / l1; + c[D_EDE3_DES][i] = c[D_EDE3_DES][i - 1] * l0 / l1; + c[D_CBC_IDEA][i] = c[D_CBC_IDEA][i - 1] * l0 / l1; + c[D_CBC_SEED][i] = c[D_CBC_SEED][i - 1] * l0 / l1; + c[D_CBC_RC2][i] = c[D_CBC_RC2][i - 1] * l0 / l1; + c[D_CBC_RC5][i] = c[D_CBC_RC5][i - 1] * l0 / l1; + c[D_CBC_BF][i] = c[D_CBC_BF][i - 1] * l0 / l1; + c[D_CBC_CAST][i] = c[D_CBC_CAST][i - 1] * l0 / l1; + c[D_CBC_128_AES][i] = c[D_CBC_128_AES][i - 1] * l0 / l1; + c[D_CBC_192_AES][i] = c[D_CBC_192_AES][i - 1] * l0 / l1; + c[D_CBC_256_AES][i] = c[D_CBC_256_AES][i - 1] * l0 / l1; + c[D_CBC_128_CML][i] = c[D_CBC_128_CML][i - 1] * l0 / l1; + c[D_CBC_192_CML][i] = c[D_CBC_192_CML][i - 1] * l0 / l1; + c[D_CBC_256_CML][i] = c[D_CBC_256_CML][i - 1] * l0 / l1; + c[D_IGE_128_AES][i] = c[D_IGE_128_AES][i - 1] * l0 / l1; + c[D_IGE_192_AES][i] = c[D_IGE_192_AES][i - 1] * l0 / l1; + c[D_IGE_256_AES][i] = c[D_IGE_256_AES][i - 1] * l0 / l1; + } + +# ifndef OPENSSL_NO_RSA + rsa_c[R_RSA_512][0] = count / 2000; + rsa_c[R_RSA_512][1] = count / 400; + for (i = 1; i < RSA_NUM; i++) { + rsa_c[i][0] = rsa_c[i - 1][0] / 8; + rsa_c[i][1] = rsa_c[i - 1][1] / 4; + if (rsa_doit[i] <= 1 && rsa_c[i][0] == 0) + rsa_doit[i] = 0; + else { + if (rsa_c[i][0] == 0) { + rsa_c[i][0] = 1; /* Set minimum iteration Nb to 1. */ + rsa_c[i][1] = 20; + } + } + } +# endif + +# ifndef OPENSSL_NO_DSA + dsa_c[R_DSA_512][0] = count / 1000; + dsa_c[R_DSA_512][1] = count / 1000 / 2; + for (i = 1; i < DSA_NUM; i++) { + dsa_c[i][0] = dsa_c[i - 1][0] / 4; + dsa_c[i][1] = dsa_c[i - 1][1] / 4; + if (dsa_doit[i] <= 1 && dsa_c[i][0] == 0) + dsa_doit[i] = 0; + else { + if (dsa_c[i][0] == 0) { + dsa_c[i][0] = 1; /* Set minimum iteration Nb to 1. */ + dsa_c[i][1] = 1; + } + } + } +# endif + +# ifndef OPENSSL_NO_EC + ecdsa_c[R_EC_P160][0] = count / 1000; + ecdsa_c[R_EC_P160][1] = count / 1000 / 2; + for (i = R_EC_P192; i <= R_EC_P521; i++) { + ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2; + ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2; + if (ecdsa_doit[i] <= 1 && ecdsa_c[i][0] == 0) + ecdsa_doit[i] = 0; + else { + if (ecdsa_c[i][0] == 0) { + ecdsa_c[i][0] = 1; + ecdsa_c[i][1] = 1; + } + } + } + ecdsa_c[R_EC_K163][0] = count / 1000; + ecdsa_c[R_EC_K163][1] = count / 1000 / 2; + for (i = R_EC_K233; i <= R_EC_K571; i++) { + ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2; + ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2; + if (ecdsa_doit[i] <= 1 && ecdsa_c[i][0] == 0) + ecdsa_doit[i] = 0; + else { + if (ecdsa_c[i][0] == 0) { + ecdsa_c[i][0] = 1; + ecdsa_c[i][1] = 1; + } + } + } + ecdsa_c[R_EC_B163][0] = count / 1000; + ecdsa_c[R_EC_B163][1] = count / 1000 / 2; + for (i = R_EC_B233; i <= R_EC_B571; i++) { + ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2; + ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2; + if (ecdsa_doit[i] <= 1 && ecdsa_c[i][0] == 0) + ecdsa_doit[i] = 0; + else { + if (ecdsa_c[i][0] == 0) { + ecdsa_c[i][0] = 1; + ecdsa_c[i][1] = 1; + } + } + } + + ecdh_c[R_EC_P160][0] = count / 1000; + for (i = R_EC_P192; i <= R_EC_P521; i++) { + ecdh_c[i][0] = ecdh_c[i - 1][0] / 2; + if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0) + ecdh_doit[i] = 0; + else { + if (ecdh_c[i][0] == 0) { + ecdh_c[i][0] = 1; + } + } + } + ecdh_c[R_EC_K163][0] = count / 1000; + for (i = R_EC_K233; i <= R_EC_K571; i++) { + ecdh_c[i][0] = ecdh_c[i - 1][0] / 2; + if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0) + ecdh_doit[i] = 0; + else { + if (ecdh_c[i][0] == 0) { + ecdh_c[i][0] = 1; + } + } + } + ecdh_c[R_EC_B163][0] = count / 1000; + for (i = R_EC_B233; i <= R_EC_B571; i++) { + ecdh_c[i][0] = ecdh_c[i - 1][0] / 2; + if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0) + ecdh_doit[i] = 0; + else { + if (ecdh_c[i][0] == 0) { + ecdh_c[i][0] = 1; + } + } + } +# endif + +# else +/* not worth fixing */ +# error "You cannot disable DES on systems without SIGALRM." +# endif /* OPENSSL_NO_DES */ +#else +# ifndef _WIN32 + signal(SIGALRM, sig_done); +# endif +#endif /* SIGALRM */ + +#ifndef OPENSSL_NO_MD2 + if (doit[D_MD2]) { + for (testnum = 0; testnum < SIZE_NUM; testnum++) { + print_message(names[D_MD2], c[D_MD2][testnum], lengths[testnum]); + Time_F(START); + count = run_benchmark(async_jobs, EVP_Digest_MD2_loop, loopargs); + d = Time_F(STOP); + print_result(D_MD2, testnum, count, d); + } + } +#endif +#ifndef OPENSSL_NO_MDC2 + if (doit[D_MDC2]) { + for (testnum = 0; testnum < SIZE_NUM; testnum++) { + print_message(names[D_MDC2], c[D_MDC2][testnum], lengths[testnum]); + Time_F(START); + count = run_benchmark(async_jobs, EVP_Digest_MDC2_loop, loopargs); + d = Time_F(STOP); + print_result(D_MDC2, testnum, count, d); + } + } +#endif + +#ifndef OPENSSL_NO_MD4 + if (doit[D_MD4]) { + for (testnum = 0; testnum < SIZE_NUM; testnum++) { + print_message(names[D_MD4], c[D_MD4][testnum], lengths[testnum]); + Time_F(START); + count = run_benchmark(async_jobs, EVP_Digest_MD4_loop, loopargs); + d = Time_F(STOP); + print_result(D_MD4, testnum, count, d); + } + } +#endif + +#ifndef OPENSSL_NO_MD5 + if (doit[D_MD5]) { + for (testnum = 0; testnum < SIZE_NUM; testnum++) { + print_message(names[D_MD5], c[D_MD5][testnum], lengths[testnum]); + Time_F(START); + count = run_benchmark(async_jobs, MD5_loop, loopargs); + d = Time_F(STOP); + print_result(D_MD5, testnum, count, d); + } + } + + if (doit[D_HMAC]) { + static const char hmac_key[] = "This is a key..."; + int len = strlen(hmac_key); + + for (i = 0; i < loopargs_len; i++) { + loopargs[i].hctx = HMAC_CTX_new(); + if (loopargs[i].hctx == NULL) { + BIO_printf(bio_err, "HMAC malloc failure, exiting..."); + exit(1); + } + + HMAC_Init_ex(loopargs[i].hctx, hmac_key, len, EVP_md5(), NULL); + } + for (testnum = 0; testnum < SIZE_NUM; testnum++) { + print_message(names[D_HMAC], c[D_HMAC][testnum], lengths[testnum]); + Time_F(START); + count = run_benchmark(async_jobs, HMAC_loop, loopargs); + d = Time_F(STOP); + print_result(D_HMAC, testnum, count, d); + } + for (i = 0; i < loopargs_len; i++) { + HMAC_CTX_free(loopargs[i].hctx); + } + } +#endif + if (doit[D_SHA1]) { + for (testnum = 0; testnum < SIZE_NUM; testnum++) { + print_message(names[D_SHA1], c[D_SHA1][testnum], lengths[testnum]); + Time_F(START); + count = run_benchmark(async_jobs, SHA1_loop, loopargs); + d = Time_F(STOP); + print_result(D_SHA1, testnum, count, d); + } + } + if (doit[D_SHA256]) { + for (testnum = 0; testnum < SIZE_NUM; testnum++) { + print_message(names[D_SHA256], c[D_SHA256][testnum], lengths[testnum]); + Time_F(START); + count = run_benchmark(async_jobs, SHA256_loop, loopargs); + d = Time_F(STOP); + print_result(D_SHA256, testnum, count, d); + } + } + if (doit[D_SHA512]) { + for (testnum = 0; testnum < SIZE_NUM; testnum++) { + print_message(names[D_SHA512], c[D_SHA512][testnum], lengths[testnum]); + Time_F(START); + count = run_benchmark(async_jobs, SHA512_loop, loopargs); + d = Time_F(STOP); + print_result(D_SHA512, testnum, count, d); + } + } + +#ifndef OPENSSL_NO_WHIRLPOOL + if (doit[D_WHIRLPOOL]) { + for (testnum = 0; testnum < SIZE_NUM; testnum++) { + print_message(names[D_WHIRLPOOL], c[D_WHIRLPOOL][testnum], lengths[testnum]); + Time_F(START); + count = run_benchmark(async_jobs, WHIRLPOOL_loop, loopargs); + d = Time_F(STOP); + print_result(D_WHIRLPOOL, testnum, count, d); + } + } +#endif + +#ifndef OPENSSL_NO_RMD160 + if (doit[D_RMD160]) { + for (testnum = 0; testnum < SIZE_NUM; testnum++) { + print_message(names[D_RMD160], c[D_RMD160][testnum], lengths[testnum]); + Time_F(START); + count = run_benchmark(async_jobs, EVP_Digest_RMD160_loop, loopargs); + d = Time_F(STOP); + print_result(D_RMD160, testnum, count, d); + } + } +#endif +#ifndef OPENSSL_NO_RC4 + if (doit[D_RC4]) { + for (testnum = 0; testnum < SIZE_NUM; testnum++) { + print_message(names[D_RC4], c[D_RC4][testnum], lengths[testnum]); + Time_F(START); + count = run_benchmark(async_jobs, RC4_loop, loopargs); + d = Time_F(STOP); + print_result(D_RC4, testnum, count, d); + } + } +#endif +#ifndef OPENSSL_NO_DES + if (doit[D_CBC_DES]) { + for (testnum = 0; testnum < SIZE_NUM; testnum++) { + print_message(names[D_CBC_DES], c[D_CBC_DES][testnum], lengths[testnum]); + Time_F(START); + count = run_benchmark(async_jobs, DES_ncbc_encrypt_loop, loopargs); + d = Time_F(STOP); + print_result(D_CBC_DES, testnum, count, d); + } + } + + if (doit[D_EDE3_DES]) { + for (testnum = 0; testnum < SIZE_NUM; testnum++) { + print_message(names[D_EDE3_DES], c[D_EDE3_DES][testnum], lengths[testnum]); + Time_F(START); + count = run_benchmark(async_jobs, DES_ede3_cbc_encrypt_loop, loopargs); + d = Time_F(STOP); + print_result(D_EDE3_DES, testnum, count, d); + } + } +#endif + + if (doit[D_CBC_128_AES]) { + for (testnum = 0; testnum < SIZE_NUM; testnum++) { + print_message(names[D_CBC_128_AES], c[D_CBC_128_AES][testnum], + lengths[testnum]); + Time_F(START); + count = run_benchmark(async_jobs, AES_cbc_128_encrypt_loop, loopargs); + d = Time_F(STOP); + print_result(D_CBC_128_AES, testnum, count, d); + } + } + if (doit[D_CBC_192_AES]) { + for (testnum = 0; testnum < SIZE_NUM; testnum++) { + print_message(names[D_CBC_192_AES], c[D_CBC_192_AES][testnum], + lengths[testnum]); + Time_F(START); + count = run_benchmark(async_jobs, AES_cbc_192_encrypt_loop, loopargs); + d = Time_F(STOP); + print_result(D_CBC_192_AES, testnum, count, d); + } + } + if (doit[D_CBC_256_AES]) { + for (testnum = 0; testnum < SIZE_NUM; testnum++) { + print_message(names[D_CBC_256_AES], c[D_CBC_256_AES][testnum], + lengths[testnum]); + Time_F(START); + count = run_benchmark(async_jobs, AES_cbc_256_encrypt_loop, loopargs); + d = Time_F(STOP); + print_result(D_CBC_256_AES, testnum, count, d); + } + } + + if (doit[D_IGE_128_AES]) { + for (testnum = 0; testnum < SIZE_NUM; testnum++) { + print_message(names[D_IGE_128_AES], c[D_IGE_128_AES][testnum], + lengths[testnum]); + Time_F(START); + count = run_benchmark(async_jobs, AES_ige_128_encrypt_loop, loopargs); + d = Time_F(STOP); + print_result(D_IGE_128_AES, testnum, count, d); + } + } + if (doit[D_IGE_192_AES]) { + for (testnum = 0; testnum < SIZE_NUM; testnum++) { + print_message(names[D_IGE_192_AES], c[D_IGE_192_AES][testnum], + lengths[testnum]); + Time_F(START); + count = run_benchmark(async_jobs, AES_ige_192_encrypt_loop, loopargs); + d = Time_F(STOP); + print_result(D_IGE_192_AES, testnum, count, d); + } + } + if (doit[D_IGE_256_AES]) { + for (testnum = 0; testnum < SIZE_NUM; testnum++) { + print_message(names[D_IGE_256_AES], c[D_IGE_256_AES][testnum], + lengths[testnum]); + Time_F(START); + count = run_benchmark(async_jobs, AES_ige_256_encrypt_loop, loopargs); + d = Time_F(STOP); + print_result(D_IGE_256_AES, testnum, count, d); + } + } + if (doit[D_GHASH]) { + for (i = 0; i < loopargs_len; i++) { + loopargs[i].gcm_ctx = CRYPTO_gcm128_new(&aes_ks1, (block128_f) AES_encrypt); + CRYPTO_gcm128_setiv(loopargs[i].gcm_ctx, (unsigned char *)"0123456789ab", 12); + } + + for (testnum = 0; testnum < SIZE_NUM; testnum++) { + print_message(names[D_GHASH], c[D_GHASH][testnum], lengths[testnum]); + Time_F(START); + count = run_benchmark(async_jobs, CRYPTO_gcm128_aad_loop, loopargs); + d = Time_F(STOP); + print_result(D_GHASH, testnum, count, d); + } + for (i = 0; i < loopargs_len; i++) + CRYPTO_gcm128_release(loopargs[i].gcm_ctx); + } + +#ifndef OPENSSL_NO_CAMELLIA + if (doit[D_CBC_128_CML]) { + if (async_jobs > 0) { + BIO_printf(bio_err, "Async mode is not supported with %s\n", + names[D_CBC_128_CML]); + doit[D_CBC_128_CML] = 0; + } + for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) { + print_message(names[D_CBC_128_CML], c[D_CBC_128_CML][testnum], + lengths[testnum]); + Time_F(START); + for (count = 0, run = 1; COND(c[D_CBC_128_CML][testnum]); count++) + Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, + (size_t)lengths[testnum], &camellia_ks1, + iv, CAMELLIA_ENCRYPT); + d = Time_F(STOP); + print_result(D_CBC_128_CML, testnum, count, d); + } + } + if (doit[D_CBC_192_CML]) { + if (async_jobs > 0) { + BIO_printf(bio_err, "Async mode is not supported with %s\n", + names[D_CBC_192_CML]); + doit[D_CBC_192_CML] = 0; + } + for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) { + print_message(names[D_CBC_192_CML], c[D_CBC_192_CML][testnum], + lengths[testnum]); + if (async_jobs > 0) { + BIO_printf(bio_err, "Async mode is not supported, exiting..."); + exit(1); + } + Time_F(START); + for (count = 0, run = 1; COND(c[D_CBC_192_CML][testnum]); count++) + Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, + (size_t)lengths[testnum], &camellia_ks2, + iv, CAMELLIA_ENCRYPT); + d = Time_F(STOP); + print_result(D_CBC_192_CML, testnum, count, d); + } + } + if (doit[D_CBC_256_CML]) { + if (async_jobs > 0) { + BIO_printf(bio_err, "Async mode is not supported with %s\n", + names[D_CBC_256_CML]); + doit[D_CBC_256_CML] = 0; + } + for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) { + print_message(names[D_CBC_256_CML], c[D_CBC_256_CML][testnum], + lengths[testnum]); + Time_F(START); + for (count = 0, run = 1; COND(c[D_CBC_256_CML][testnum]); count++) + Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, + (size_t)lengths[testnum], &camellia_ks3, + iv, CAMELLIA_ENCRYPT); + d = Time_F(STOP); + print_result(D_CBC_256_CML, testnum, count, d); + } + } +#endif +#ifndef OPENSSL_NO_IDEA + if (doit[D_CBC_IDEA]) { + if (async_jobs > 0) { + BIO_printf(bio_err, "Async mode is not supported with %s\n", + names[D_CBC_IDEA]); + doit[D_CBC_IDEA] = 0; + } + for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) { + print_message(names[D_CBC_IDEA], c[D_CBC_IDEA][testnum], lengths[testnum]); + Time_F(START); + for (count = 0, run = 1; COND(c[D_CBC_IDEA][testnum]); count++) + IDEA_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, + (size_t)lengths[testnum], &idea_ks, + iv, IDEA_ENCRYPT); + d = Time_F(STOP); + print_result(D_CBC_IDEA, testnum, count, d); + } + } +#endif +#ifndef OPENSSL_NO_SEED + if (doit[D_CBC_SEED]) { + if (async_jobs > 0) { + BIO_printf(bio_err, "Async mode is not supported with %s\n", + names[D_CBC_SEED]); + doit[D_CBC_SEED] = 0; + } + for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) { + print_message(names[D_CBC_SEED], c[D_CBC_SEED][testnum], lengths[testnum]); + Time_F(START); + for (count = 0, run = 1; COND(c[D_CBC_SEED][testnum]); count++) + SEED_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, + (size_t)lengths[testnum], &seed_ks, iv, 1); + d = Time_F(STOP); + print_result(D_CBC_SEED, testnum, count, d); + } + } +#endif +#ifndef OPENSSL_NO_RC2 + if (doit[D_CBC_RC2]) { + if (async_jobs > 0) { + BIO_printf(bio_err, "Async mode is not supported with %s\n", + names[D_CBC_RC2]); + doit[D_CBC_RC2] = 0; + } + for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) { + print_message(names[D_CBC_RC2], c[D_CBC_RC2][testnum], lengths[testnum]); + if (async_jobs > 0) { + BIO_printf(bio_err, "Async mode is not supported, exiting..."); + exit(1); + } + Time_F(START); + for (count = 0, run = 1; COND(c[D_CBC_RC2][testnum]); count++) + RC2_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, + (size_t)lengths[testnum], &rc2_ks, + iv, RC2_ENCRYPT); + d = Time_F(STOP); + print_result(D_CBC_RC2, testnum, count, d); + } + } +#endif +#ifndef OPENSSL_NO_RC5 + if (doit[D_CBC_RC5]) { + if (async_jobs > 0) { + BIO_printf(bio_err, "Async mode is not supported with %s\n", + names[D_CBC_RC5]); + doit[D_CBC_RC5] = 0; + } + for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) { + print_message(names[D_CBC_RC5], c[D_CBC_RC5][testnum], lengths[testnum]); + if (async_jobs > 0) { + BIO_printf(bio_err, "Async mode is not supported, exiting..."); + exit(1); + } + Time_F(START); + for (count = 0, run = 1; COND(c[D_CBC_RC5][testnum]); count++) + RC5_32_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, + (size_t)lengths[testnum], &rc5_ks, + iv, RC5_ENCRYPT); + d = Time_F(STOP); + print_result(D_CBC_RC5, testnum, count, d); + } + } +#endif +#ifndef OPENSSL_NO_BF + if (doit[D_CBC_BF]) { + if (async_jobs > 0) { + BIO_printf(bio_err, "Async mode is not supported with %s\n", + names[D_CBC_BF]); + doit[D_CBC_BF] = 0; + } + for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) { + print_message(names[D_CBC_BF], c[D_CBC_BF][testnum], lengths[testnum]); + Time_F(START); + for (count = 0, run = 1; COND(c[D_CBC_BF][testnum]); count++) + BF_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, + (size_t)lengths[testnum], &bf_ks, + iv, BF_ENCRYPT); + d = Time_F(STOP); + print_result(D_CBC_BF, testnum, count, d); + } + } +#endif +#ifndef OPENSSL_NO_CAST + if (doit[D_CBC_CAST]) { + if (async_jobs > 0) { + BIO_printf(bio_err, "Async mode is not supported with %s\n", + names[D_CBC_CAST]); + doit[D_CBC_CAST] = 0; + } + for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) { + print_message(names[D_CBC_CAST], c[D_CBC_CAST][testnum], lengths[testnum]); + Time_F(START); + for (count = 0, run = 1; COND(c[D_CBC_CAST][testnum]); count++) + CAST_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, + (size_t)lengths[testnum], &cast_ks, + iv, CAST_ENCRYPT); + d = Time_F(STOP); + print_result(D_CBC_CAST, testnum, count, d); + } + } +#endif + + if (doit[D_EVP]) { + if (multiblock && evp_cipher) { + if (! + (EVP_CIPHER_flags(evp_cipher) & + EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)) { + BIO_printf(bio_err, "%s is not multi-block capable\n", + OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher))); + goto end; + } + if (async_jobs > 0) { + BIO_printf(bio_err, "Async mode is not supported, exiting..."); + exit(1); + } + multiblock_speed(evp_cipher); + ret = 0; + goto end; + } + for (testnum = 0; testnum < SIZE_NUM; testnum++) { + if (evp_cipher) { + + names[D_EVP] = OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher)); + /* + * -O3 -fschedule-insns messes up an optimization here! + * names[D_EVP] somehow becomes NULL + */ + print_message(names[D_EVP], save_count, lengths[testnum]); + + for (k = 0; k < loopargs_len; k++) { + loopargs[k].ctx = EVP_CIPHER_CTX_new(); + if (decrypt) + EVP_DecryptInit_ex(loopargs[k].ctx, evp_cipher, NULL, key16, iv); + else + EVP_EncryptInit_ex(loopargs[k].ctx, evp_cipher, NULL, key16, iv); + EVP_CIPHER_CTX_set_padding(loopargs[k].ctx, 0); + } + + Time_F(START); + count = run_benchmark(async_jobs, EVP_Update_loop, loopargs); + d = Time_F(STOP); + for (k = 0; k < loopargs_len; k++) { + EVP_CIPHER_CTX_free(loopargs[k].ctx); + } + } + if (evp_md) { + names[D_EVP] = OBJ_nid2ln(EVP_MD_type(evp_md)); + print_message(names[D_EVP], save_count, lengths[testnum]); + Time_F(START); + count = run_benchmark(async_jobs, EVP_Digest_loop, loopargs); + d = Time_F(STOP); + } + print_result(D_EVP, testnum, count, d); + } + } + + for (i = 0; i < loopargs_len; i++) + RAND_bytes(loopargs[i].buf, 36); + +#ifndef OPENSSL_NO_RSA + for (testnum = 0; testnum < RSA_NUM; testnum++) { + int st = 0; + if (!rsa_doit[testnum]) + continue; + for (i = 0; i < loopargs_len; i++) { + st = RSA_sign(NID_md5_sha1, loopargs[i].buf, 36, loopargs[i].buf2, + &loopargs[i].siglen, loopargs[i].rsa_key[testnum]); + if (st == 0) + break; + } + if (st == 0) { + BIO_printf(bio_err, + "RSA sign failure. No RSA sign will be done.\n"); + ERR_print_errors(bio_err); + rsa_count = 1; + } else { + pkey_print_message("private", "rsa", + rsa_c[testnum][0], rsa_bits[testnum], RSA_SECONDS); + /* RSA_blinding_on(rsa_key[testnum],NULL); */ + Time_F(START); + count = run_benchmark(async_jobs, RSA_sign_loop, loopargs); + d = Time_F(STOP); + BIO_printf(bio_err, + mr ? "+R1:%ld:%d:%.2f\n" + : "%ld %d bit private RSA's in %.2fs\n", + count, rsa_bits[testnum], d); + rsa_results[testnum][0] = d / (double)count; + rsa_count = count; + } + + for (i = 0; i < loopargs_len; i++) { + st = RSA_verify(NID_md5_sha1, loopargs[i].buf, 36, loopargs[i].buf2, + loopargs[i].siglen, loopargs[i].rsa_key[testnum]); + if (st <= 0) + break; + } + if (st <= 0) { + BIO_printf(bio_err, + "RSA verify failure. No RSA verify will be done.\n"); + ERR_print_errors(bio_err); + rsa_doit[testnum] = 0; + } else { + pkey_print_message("public", "rsa", + rsa_c[testnum][1], rsa_bits[testnum], RSA_SECONDS); + Time_F(START); + count = run_benchmark(async_jobs, RSA_verify_loop, loopargs); + d = Time_F(STOP); + BIO_printf(bio_err, + mr ? "+R2:%ld:%d:%.2f\n" + : "%ld %d bit public RSA's in %.2fs\n", + count, rsa_bits[testnum], d); + rsa_results[testnum][1] = d / (double)count; + } + + if (rsa_count <= 1) { + /* if longer than 10s, don't do any more */ + for (testnum++; testnum < RSA_NUM; testnum++) + rsa_doit[testnum] = 0; + } + } +#endif /* OPENSSL_NO_RSA */ + + for (i = 0; i < loopargs_len; i++) + RAND_bytes(loopargs[i].buf, 36); + +#ifndef OPENSSL_NO_DSA + if (RAND_status() != 1) { + RAND_seed(rnd_seed, sizeof(rnd_seed)); + } + for (testnum = 0; testnum < DSA_NUM; testnum++) { + int st = 0; + if (!dsa_doit[testnum]) + continue; + + /* DSA_generate_key(dsa_key[testnum]); */ + /* DSA_sign_setup(dsa_key[testnum],NULL); */ + for (i = 0; i < loopargs_len; i++) { + st = DSA_sign(0, loopargs[i].buf, 20, loopargs[i].buf2, + &loopargs[i].siglen, loopargs[i].dsa_key[testnum]); + if (st == 0) + break; + } + if (st == 0) { + BIO_printf(bio_err, + "DSA sign failure. No DSA sign will be done.\n"); + ERR_print_errors(bio_err); + rsa_count = 1; + } else { + pkey_print_message("sign", "dsa", + dsa_c[testnum][0], dsa_bits[testnum], DSA_SECONDS); + Time_F(START); + count = run_benchmark(async_jobs, DSA_sign_loop, loopargs); + d = Time_F(STOP); + BIO_printf(bio_err, + mr ? "+R3:%ld:%d:%.2f\n" + : "%ld %d bit DSA signs in %.2fs\n", + count, dsa_bits[testnum], d); + dsa_results[testnum][0] = d / (double)count; + rsa_count = count; + } + + for (i = 0; i < loopargs_len; i++) { + st = DSA_verify(0, loopargs[i].buf, 20, loopargs[i].buf2, + loopargs[i].siglen, loopargs[i].dsa_key[testnum]); + if (st <= 0) + break; + } + if (st <= 0) { + BIO_printf(bio_err, + "DSA verify failure. No DSA verify will be done.\n"); + ERR_print_errors(bio_err); + dsa_doit[testnum] = 0; + } else { + pkey_print_message("verify", "dsa", + dsa_c[testnum][1], dsa_bits[testnum], DSA_SECONDS); + Time_F(START); + count = run_benchmark(async_jobs, DSA_verify_loop, loopargs); + d = Time_F(STOP); + BIO_printf(bio_err, + mr ? "+R4:%ld:%d:%.2f\n" + : "%ld %d bit DSA verify in %.2fs\n", + count, dsa_bits[testnum], d); + dsa_results[testnum][1] = d / (double)count; + } + + if (rsa_count <= 1) { + /* if longer than 10s, don't do any more */ + for (testnum++; testnum < DSA_NUM; testnum++) + dsa_doit[testnum] = 0; + } + } +#endif /* OPENSSL_NO_DSA */ + +#ifndef OPENSSL_NO_EC + if (RAND_status() != 1) { + RAND_seed(rnd_seed, sizeof(rnd_seed)); + } + for (testnum = 0; testnum < EC_NUM; testnum++) { + int st = 1; + + if (!ecdsa_doit[testnum]) + continue; /* Ignore Curve */ + for (i = 0; i < loopargs_len; i++) { + loopargs[i].ecdsa[testnum] = EC_KEY_new_by_curve_name(test_curves[testnum]); + if (loopargs[i].ecdsa[testnum] == NULL) { + st = 0; + break; + } + } + if (st == 0) { + BIO_printf(bio_err, "ECDSA failure.\n"); + ERR_print_errors(bio_err); + rsa_count = 1; + } else { + for (i = 0; i < loopargs_len; i++) { + EC_KEY_precompute_mult(loopargs[i].ecdsa[testnum], NULL); + /* Perform ECDSA signature test */ + EC_KEY_generate_key(loopargs[i].ecdsa[testnum]); + st = ECDSA_sign(0, loopargs[i].buf, 20, loopargs[i].buf2, + &loopargs[i].siglen, loopargs[i].ecdsa[testnum]); + if (st == 0) + break; + } + if (st == 0) { + BIO_printf(bio_err, + "ECDSA sign failure. No ECDSA sign will be done.\n"); + ERR_print_errors(bio_err); + rsa_count = 1; + } else { + pkey_print_message("sign", "ecdsa", + ecdsa_c[testnum][0], + test_curves_bits[testnum], ECDSA_SECONDS); + Time_F(START); + count = run_benchmark(async_jobs, ECDSA_sign_loop, loopargs); + d = Time_F(STOP); + + BIO_printf(bio_err, + mr ? "+R5:%ld:%d:%.2f\n" : + "%ld %d bit ECDSA signs in %.2fs \n", + count, test_curves_bits[testnum], d); + ecdsa_results[testnum][0] = d / (double)count; + rsa_count = count; + } + + /* Perform ECDSA verification test */ + for (i = 0; i < loopargs_len; i++) { + st = ECDSA_verify(0, loopargs[i].buf, 20, loopargs[i].buf2, + loopargs[i].siglen, loopargs[i].ecdsa[testnum]); + if (st != 1) + break; + } + if (st != 1) { + BIO_printf(bio_err, + "ECDSA verify failure. No ECDSA verify will be done.\n"); + ERR_print_errors(bio_err); + ecdsa_doit[testnum] = 0; + } else { + pkey_print_message("verify", "ecdsa", + ecdsa_c[testnum][1], + test_curves_bits[testnum], ECDSA_SECONDS); + Time_F(START); + count = run_benchmark(async_jobs, ECDSA_verify_loop, loopargs); + d = Time_F(STOP); + BIO_printf(bio_err, + mr ? "+R6:%ld:%d:%.2f\n" + : "%ld %d bit ECDSA verify in %.2fs\n", + count, test_curves_bits[testnum], d); + ecdsa_results[testnum][1] = d / (double)count; + } + + if (rsa_count <= 1) { + /* if longer than 10s, don't do any more */ + for (testnum++; testnum < EC_NUM; testnum++) + ecdsa_doit[testnum] = 0; + } + } + } + + if (RAND_status() != 1) { + RAND_seed(rnd_seed, sizeof(rnd_seed)); + } + for (testnum = 0; testnum < EC_NUM; testnum++) { + int ecdh_checks = 1; + + if (!ecdh_doit[testnum]) + continue; + for (i = 0; i < loopargs_len; i++) { + loopargs[i].ecdh_a[testnum] = EC_KEY_new_by_curve_name(test_curves[testnum]); + loopargs[i].ecdh_b[testnum] = EC_KEY_new_by_curve_name(test_curves[testnum]); + if (loopargs[i].ecdh_a[testnum] == NULL || + loopargs[i].ecdh_b[testnum] == NULL) { + ecdh_checks = 0; + break; + } + } + if (ecdh_checks == 0) { + BIO_printf(bio_err, "ECDH failure.\n"); + ERR_print_errors(bio_err); + rsa_count = 1; + } else { + for (i = 0; i < loopargs_len; i++) { + /* generate two ECDH key pairs */ + if (!EC_KEY_generate_key(loopargs[i].ecdh_a[testnum]) || + !EC_KEY_generate_key(loopargs[i].ecdh_b[testnum])) { + BIO_printf(bio_err, "ECDH key generation failure.\n"); + ERR_print_errors(bio_err); + ecdh_checks = 0; + rsa_count = 1; + } else { + int secret_size_a, secret_size_b; + /* + * If field size is not more than 24 octets, then use SHA-1 + * hash of result; otherwise, use result (see section 4.8 of + * draft-ietf-tls-ecc-03.txt). + */ + int field_size = EC_GROUP_get_degree( + EC_KEY_get0_group(loopargs[i].ecdh_a[testnum])); + + if (field_size <= 24 * 8) { /* 192 bits */ + loopargs[i].outlen = KDF1_SHA1_len; + loopargs[i].kdf = KDF1_SHA1; + } else { + loopargs[i].outlen = (field_size + 7) / 8; + loopargs[i].kdf = NULL; + } + secret_size_a = + ECDH_compute_key(loopargs[i].secret_a, loopargs[i].outlen, + EC_KEY_get0_public_key(loopargs[i].ecdh_b[testnum]), + loopargs[i].ecdh_a[testnum], loopargs[i].kdf); + secret_size_b = + ECDH_compute_key(loopargs[i].secret_b, loopargs[i].outlen, + EC_KEY_get0_public_key(loopargs[i].ecdh_a[testnum]), + loopargs[i].ecdh_b[testnum], loopargs[i].kdf); + if (secret_size_a != secret_size_b) + ecdh_checks = 0; + else + ecdh_checks = 1; + + for (k = 0; k < secret_size_a && ecdh_checks == 1; k++) { + if (loopargs[i].secret_a[k] != loopargs[i].secret_b[k]) + ecdh_checks = 0; + } + + if (ecdh_checks == 0) { + BIO_printf(bio_err, "ECDH computations don't match.\n"); + ERR_print_errors(bio_err); + rsa_count = 1; + break; + } + } + } + if (ecdh_checks != 0) { + pkey_print_message("", "ecdh", + ecdh_c[testnum][0], + test_curves_bits[testnum], ECDH_SECONDS); + Time_F(START); + count = run_benchmark(async_jobs, ECDH_compute_key_loop, loopargs); + d = Time_F(STOP); + BIO_printf(bio_err, + mr ? "+R7:%ld:%d:%.2f\n" : + "%ld %d-bit ECDH ops in %.2fs\n", count, + test_curves_bits[testnum], d); + ecdh_results[testnum][0] = d / (double)count; + rsa_count = count; + } + } + + if (rsa_count <= 1) { + /* if longer than 10s, don't do any more */ + for (testnum++; testnum < EC_NUM; testnum++) + ecdh_doit[testnum] = 0; + } + } +#endif /* OPENSSL_NO_EC */ +#ifndef NO_FORK + show_res: +#endif + if (!mr) { + printf("%s\n", OpenSSL_version(OPENSSL_VERSION)); + printf("%s\n", OpenSSL_version(OPENSSL_BUILT_ON)); + printf("options:"); + printf("%s ", BN_options()); +#ifndef OPENSSL_NO_MD2 + printf("%s ", MD2_options()); +#endif +#ifndef OPENSSL_NO_RC4 + printf("%s ", RC4_options()); +#endif +#ifndef OPENSSL_NO_DES + printf("%s ", DES_options()); +#endif + printf("%s ", AES_options()); +#ifndef OPENSSL_NO_IDEA + printf("%s ", IDEA_options()); +#endif +#ifndef OPENSSL_NO_BF + printf("%s ", BF_options()); +#endif + printf("\n%s\n", OpenSSL_version(OPENSSL_CFLAGS)); + } + + if (pr_header) { + if (mr) + printf("+H"); + else { + printf + ("The 'numbers' are in 1000s of bytes per second processed.\n"); + printf("type "); + } + for (testnum = 0; testnum < SIZE_NUM; testnum++) + printf(mr ? ":%d" : "%7d bytes", lengths[testnum]); + printf("\n"); + } + + for (k = 0; k < ALGOR_NUM; k++) { + if (!doit[k]) + continue; + if (mr) + printf("+F:%d:%s", k, names[k]); + else + printf("%-13s", names[k]); + for (testnum = 0; testnum < SIZE_NUM; testnum++) { + if (results[k][testnum] > 10000 && !mr) + printf(" %11.2fk", results[k][testnum] / 1e3); + else + printf(mr ? ":%.2f" : " %11.2f ", results[k][testnum]); + } + printf("\n"); + } +#ifndef OPENSSL_NO_RSA + testnum = 1; + for (k = 0; k < RSA_NUM; k++) { + if (!rsa_doit[k]) + continue; + if (testnum && !mr) { + printf("%18ssign verify sign/s verify/s\n", " "); + testnum = 0; + } + if (mr) + printf("+F2:%u:%u:%f:%f\n", + k, rsa_bits[k], rsa_results[k][0], rsa_results[k][1]); + else + printf("rsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n", + rsa_bits[k], rsa_results[k][0], rsa_results[k][1], + 1.0 / rsa_results[k][0], 1.0 / rsa_results[k][1]); + } +#endif +#ifndef OPENSSL_NO_DSA + testnum = 1; + for (k = 0; k < DSA_NUM; k++) { + if (!dsa_doit[k]) + continue; + if (testnum && !mr) { + printf("%18ssign verify sign/s verify/s\n", " "); + testnum = 0; + } + if (mr) + printf("+F3:%u:%u:%f:%f\n", + k, dsa_bits[k], dsa_results[k][0], dsa_results[k][1]); + else + printf("dsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n", + dsa_bits[k], dsa_results[k][0], dsa_results[k][1], + 1.0 / dsa_results[k][0], 1.0 / dsa_results[k][1]); + } +#endif +#ifndef OPENSSL_NO_EC + testnum = 1; + for (k = 0; k < EC_NUM; k++) { + if (!ecdsa_doit[k]) + continue; + if (testnum && !mr) { + printf("%30ssign verify sign/s verify/s\n", " "); + testnum = 0; + } + + if (mr) + printf("+F4:%u:%u:%f:%f\n", + k, test_curves_bits[k], + ecdsa_results[k][0], ecdsa_results[k][1]); + else + printf("%4u bit ecdsa (%s) %8.4fs %8.4fs %8.1f %8.1f\n", + test_curves_bits[k], + test_curves_names[k], + ecdsa_results[k][0], ecdsa_results[k][1], + 1.0 / ecdsa_results[k][0], 1.0 / ecdsa_results[k][1]); + } + + testnum = 1; + for (k = 0; k < EC_NUM; k++) { + if (!ecdh_doit[k]) + continue; + if (testnum && !mr) { + printf("%30sop op/s\n", " "); + testnum = 0; + } + if (mr) + printf("+F5:%u:%u:%f:%f\n", + k, test_curves_bits[k], + ecdh_results[k][0], 1.0 / ecdh_results[k][0]); + + else + printf("%4u bit ecdh (%s) %8.4fs %8.1f\n", + test_curves_bits[k], + test_curves_names[k], + ecdh_results[k][0], 1.0 / ecdh_results[k][0]); + } +#endif + + ret = 0; + + end: + ERR_print_errors(bio_err); + for (i = 0; i < loopargs_len; i++) { + OPENSSL_free(loopargs[i].buf_malloc); + OPENSSL_free(loopargs[i].buf2_malloc); + +#ifndef OPENSSL_NO_RSA + for (k = 0; k < RSA_NUM; k++) + RSA_free(loopargs[i].rsa_key[k]); +#endif +#ifndef OPENSSL_NO_DSA + for (k = 0; k < DSA_NUM; k++) + DSA_free(loopargs[i].dsa_key[k]); +#endif +#ifndef OPENSSL_NO_EC + for (k = 0; k < EC_NUM; k++) { + EC_KEY_free(loopargs[i].ecdsa[k]); + EC_KEY_free(loopargs[i].ecdh_a[k]); + EC_KEY_free(loopargs[i].ecdh_b[k]); + } + OPENSSL_free(loopargs[i].secret_a); + OPENSSL_free(loopargs[i].secret_b); +#endif + } + + if (async_jobs > 0) { + for (i = 0; i < loopargs_len; i++) + ASYNC_WAIT_CTX_free(loopargs[i].wait_ctx); + } + + if (async_init) { + ASYNC_cleanup_thread(); + } + OPENSSL_free(loopargs); + release_engine(e); + return (ret); +} + +static void print_message(const char *s, long num, int length) +{ +#ifdef SIGALRM + BIO_printf(bio_err, + mr ? "+DT:%s:%d:%d\n" + : "Doing %s for %ds on %d size blocks: ", s, SECONDS, length); + (void)BIO_flush(bio_err); + alarm(SECONDS); +#else + BIO_printf(bio_err, + mr ? "+DN:%s:%ld:%d\n" + : "Doing %s %ld times on %d size blocks: ", s, num, length); + (void)BIO_flush(bio_err); +#endif +} + +static void pkey_print_message(const char *str, const char *str2, long num, + int bits, int tm) +{ +#ifdef SIGALRM + BIO_printf(bio_err, + mr ? "+DTP:%d:%s:%s:%d\n" + : "Doing %d bit %s %s's for %ds: ", bits, str, str2, tm); + (void)BIO_flush(bio_err); + alarm(tm); +#else + BIO_printf(bio_err, + mr ? "+DNP:%ld:%d:%s:%s\n" + : "Doing %ld %d bit %s %s's: ", num, bits, str, str2); + (void)BIO_flush(bio_err); +#endif +} + +static void print_result(int alg, int run_no, int count, double time_used) +{ + if (count == -1) { + BIO_puts(bio_err, "EVP error!\n"); + exit(1); + } + BIO_printf(bio_err, + mr ? "+R:%d:%s:%f\n" + : "%d %s's in %.2fs\n", count, names[alg], time_used); + results[alg][run_no] = ((double)count) / time_used * lengths[run_no]; +} + +#ifndef NO_FORK +static char *sstrsep(char **string, const char *delim) +{ + char isdelim[256]; + char *token = *string; + + if (**string == 0) + return NULL; + + memset(isdelim, 0, sizeof(isdelim)); + isdelim[0] = 1; + + while (*delim) { + isdelim[(unsigned char)(*delim)] = 1; + delim++; + } + + while (!isdelim[(unsigned char)(**string)]) { + (*string)++; + } + + if (**string) { + **string = 0; + (*string)++; + } + + return token; +} + +static int do_multi(int multi) +{ + int n; + int fd[2]; + int *fds; + static char sep[] = ":"; + + fds = malloc(sizeof(*fds) * multi); + for (n = 0; n < multi; ++n) { + if (pipe(fd) == -1) { + BIO_printf(bio_err, "pipe failure\n"); + exit(1); + } + fflush(stdout); + (void)BIO_flush(bio_err); + if (fork()) { + close(fd[1]); + fds[n] = fd[0]; + } else { + close(fd[0]); + close(1); + if (dup(fd[1]) == -1) { + BIO_printf(bio_err, "dup failed\n"); + exit(1); + } + close(fd[1]); + mr = 1; + usertime = 0; + free(fds); + return 0; + } + printf("Forked child %d\n", n); + } + + /* for now, assume the pipe is long enough to take all the output */ + for (n = 0; n < multi; ++n) { + FILE *f; + char buf[1024]; + char *p; + + f = fdopen(fds[n], "r"); + while (fgets(buf, sizeof(buf), f)) { + p = strchr(buf, '\n'); + if (p) + *p = '\0'; + if (buf[0] != '+') { + BIO_printf(bio_err, "Don't understand line '%s' from child %d\n", + buf, n); + continue; + } + printf("Got: %s from %d\n", buf, n); + if (strncmp(buf, "+F:", 3) == 0) { + int alg; + int j; + + p = buf + 3; + alg = atoi(sstrsep(&p, sep)); + sstrsep(&p, sep); + for (j = 0; j < SIZE_NUM; ++j) + results[alg][j] += atof(sstrsep(&p, sep)); + } else if (strncmp(buf, "+F2:", 4) == 0) { + int k; + double d; + + p = buf + 4; + k = atoi(sstrsep(&p, sep)); + sstrsep(&p, sep); + + d = atof(sstrsep(&p, sep)); + if (n) + rsa_results[k][0] = 1 / (1 / rsa_results[k][0] + 1 / d); + else + rsa_results[k][0] = d; + + d = atof(sstrsep(&p, sep)); + if (n) + rsa_results[k][1] = 1 / (1 / rsa_results[k][1] + 1 / d); + else + rsa_results[k][1] = d; + } +# ifndef OPENSSL_NO_DSA + else if (strncmp(buf, "+F3:", 4) == 0) { + int k; + double d; + + p = buf + 4; + k = atoi(sstrsep(&p, sep)); + sstrsep(&p, sep); + + d = atof(sstrsep(&p, sep)); + if (n) + dsa_results[k][0] = 1 / (1 / dsa_results[k][0] + 1 / d); + else + dsa_results[k][0] = d; + + d = atof(sstrsep(&p, sep)); + if (n) + dsa_results[k][1] = 1 / (1 / dsa_results[k][1] + 1 / d); + else + dsa_results[k][1] = d; + } +# endif +# ifndef OPENSSL_NO_EC + else if (strncmp(buf, "+F4:", 4) == 0) { + int k; + double d; + + p = buf + 4; + k = atoi(sstrsep(&p, sep)); + sstrsep(&p, sep); + + d = atof(sstrsep(&p, sep)); + if (n) + ecdsa_results[k][0] = + 1 / (1 / ecdsa_results[k][0] + 1 / d); + else + ecdsa_results[k][0] = d; + + d = atof(sstrsep(&p, sep)); + if (n) + ecdsa_results[k][1] = + 1 / (1 / ecdsa_results[k][1] + 1 / d); + else + ecdsa_results[k][1] = d; + } else if (strncmp(buf, "+F5:", 4) == 0) { + int k; + double d; + + p = buf + 4; + k = atoi(sstrsep(&p, sep)); + sstrsep(&p, sep); + + d = atof(sstrsep(&p, sep)); + if (n) + ecdh_results[k][0] = 1 / (1 / ecdh_results[k][0] + 1 / d); + else + ecdh_results[k][0] = d; + + } +# endif + + else if (strncmp(buf, "+H:", 3) == 0) { + ; + } else + BIO_printf(bio_err, "Unknown type '%s' from child %d\n", buf, n); + } + + fclose(f); + } + free(fds); + return 1; +} +#endif + +static void multiblock_speed(const EVP_CIPHER *evp_cipher) +{ + static int mblengths[] = + { 8 * 1024, 2 * 8 * 1024, 4 * 8 * 1024, 8 * 8 * 1024, 8 * 16 * 1024 }; + int j, count, num = OSSL_NELEM(mblengths); + const char *alg_name; + unsigned char *inp, *out, no_key[32], no_iv[16]; + EVP_CIPHER_CTX *ctx; + double d = 0.0; + + inp = app_malloc(mblengths[num - 1], "multiblock input buffer"); + out = app_malloc(mblengths[num - 1] + 1024, "multiblock output buffer"); + ctx = EVP_CIPHER_CTX_new(); + EVP_EncryptInit_ex(ctx, evp_cipher, NULL, no_key, no_iv); + EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_MAC_KEY, sizeof(no_key), + no_key); + alg_name = OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher)); + + for (j = 0; j < num; j++) { + print_message(alg_name, 0, mblengths[j]); + Time_F(START); + for (count = 0, run = 1; run && count < 0x7fffffff; count++) { + unsigned char aad[EVP_AEAD_TLS1_AAD_LEN]; + EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM mb_param; + size_t len = mblengths[j]; + int packlen; + + memset(aad, 0, 8); /* avoid uninitialized values */ + aad[8] = 23; /* SSL3_RT_APPLICATION_DATA */ + aad[9] = 3; /* version */ + aad[10] = 2; + aad[11] = 0; /* length */ + aad[12] = 0; + mb_param.out = NULL; + mb_param.inp = aad; + mb_param.len = len; + mb_param.interleave = 8; + + packlen = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_AAD, + sizeof(mb_param), &mb_param); + + if (packlen > 0) { + mb_param.out = out; + mb_param.inp = inp; + mb_param.len = len; + EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT, + sizeof(mb_param), &mb_param); + } else { + int pad; + + RAND_bytes(out, 16); + len += 16; + aad[11] = len >> 8; + aad[12] = len; + pad = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_TLS1_AAD, + EVP_AEAD_TLS1_AAD_LEN, aad); + EVP_Cipher(ctx, out, inp, len + pad); + } + } + d = Time_F(STOP); + BIO_printf(bio_err, mr ? "+R:%d:%s:%f\n" + : "%d %s's in %.2fs\n", count, "evp", d); + results[D_EVP][j] = ((double)count) / d * mblengths[j]; + } + + if (mr) { + fprintf(stdout, "+H"); + for (j = 0; j < num; j++) + fprintf(stdout, ":%d", mblengths[j]); + fprintf(stdout, "\n"); + fprintf(stdout, "+F:%d:%s", D_EVP, alg_name); + for (j = 0; j < num; j++) + fprintf(stdout, ":%.2f", results[D_EVP][j]); + fprintf(stdout, "\n"); + } else { + fprintf(stdout, + "The 'numbers' are in 1000s of bytes per second processed.\n"); + fprintf(stdout, "type "); + for (j = 0; j < num; j++) + fprintf(stdout, "%7d bytes", mblengths[j]); + fprintf(stdout, "\n"); + fprintf(stdout, "%-24s", alg_name); + + for (j = 0; j < num; j++) { + if (results[D_EVP][j] > 10000) + fprintf(stdout, " %11.2fk", results[D_EVP][j] / 1e3); + else + fprintf(stdout, " %11.2f ", results[D_EVP][j]); + } + fprintf(stdout, "\n"); + } + + OPENSSL_free(inp); + OPENSSL_free(out); + EVP_CIPHER_CTX_free(ctx); +} -- cgit v1.2.3