aboutsummaryrefslogtreecommitdiff
path: root/openssl-1.1.0h/crypto/modes/asm/ghashp8-ppc.pl
diff options
context:
space:
mode:
Diffstat (limited to 'openssl-1.1.0h/crypto/modes/asm/ghashp8-ppc.pl')
-rwxr-xr-xopenssl-1.1.0h/crypto/modes/asm/ghashp8-ppc.pl670
1 files changed, 670 insertions, 0 deletions
diff --git a/openssl-1.1.0h/crypto/modes/asm/ghashp8-ppc.pl b/openssl-1.1.0h/crypto/modes/asm/ghashp8-ppc.pl
new file mode 100755
index 0000000..f0598cb
--- /dev/null
+++ b/openssl-1.1.0h/crypto/modes/asm/ghashp8-ppc.pl
@@ -0,0 +1,670 @@
+#! /usr/bin/env perl
+# Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved.
+#
+# Licensed under the OpenSSL license (the "License"). You may not use
+# this file except in compliance with the License. You can obtain a copy
+# in the file LICENSE in the source distribution or at
+# https://www.openssl.org/source/license.html
+
+#
+# ====================================================================
+# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
+# project. The module is, however, dual licensed under OpenSSL and
+# CRYPTOGAMS licenses depending on where you obtain it. For further
+# details see http://www.openssl.org/~appro/cryptogams/.
+# ====================================================================
+#
+# GHASH for for PowerISA v2.07.
+#
+# July 2014
+#
+# Accurate performance measurements are problematic, because it's
+# always virtualized setup with possibly throttled processor.
+# Relative comparison is therefore more informative. This initial
+# version is ~2.1x slower than hardware-assisted AES-128-CTR, ~12x
+# faster than "4-bit" integer-only compiler-generated 64-bit code.
+# "Initial version" means that there is room for futher improvement.
+
+# May 2016
+#
+# 2x aggregated reduction improves performance by 50% (resulting
+# performance on POWER8 is 1 cycle per processed byte), and 4x
+# aggregated reduction - by 170% or 2.7x (resulting in 0.55 cpb).
+
+$flavour=shift;
+$output =shift;
+
+if ($flavour =~ /64/) {
+ $SIZE_T=8;
+ $LRSAVE=2*$SIZE_T;
+ $STU="stdu";
+ $POP="ld";
+ $PUSH="std";
+ $UCMP="cmpld";
+ $SHRI="srdi";
+} elsif ($flavour =~ /32/) {
+ $SIZE_T=4;
+ $LRSAVE=$SIZE_T;
+ $STU="stwu";
+ $POP="lwz";
+ $PUSH="stw";
+ $UCMP="cmplw";
+ $SHRI="srwi";
+} else { die "nonsense $flavour"; }
+
+$sp="r1";
+$FRAME=6*$SIZE_T+13*16; # 13*16 is for v20-v31 offload
+
+$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
+( $xlate="${dir}ppc-xlate.pl" and -f $xlate ) or
+( $xlate="${dir}../../perlasm/ppc-xlate.pl" and -f $xlate) or
+die "can't locate ppc-xlate.pl";
+
+open STDOUT,"| $^X $xlate $flavour $output" || die "can't call $xlate: $!";
+
+my ($Xip,$Htbl,$inp,$len)=map("r$_",(3..6)); # argument block
+
+my ($Xl,$Xm,$Xh,$IN)=map("v$_",(0..3));
+my ($zero,$t0,$t1,$t2,$xC2,$H,$Hh,$Hl,$lemask)=map("v$_",(4..12));
+my ($Xl1,$Xm1,$Xh1,$IN1,$H2,$H2h,$H2l)=map("v$_",(13..19));
+my $vrsave="r12";
+
+$code=<<___;
+.machine "any"
+
+.text
+
+.globl .gcm_init_p8
+.align 5
+.gcm_init_p8:
+ li r0,-4096
+ li r8,0x10
+ mfspr $vrsave,256
+ li r9,0x20
+ mtspr 256,r0
+ li r10,0x30
+ lvx_u $H,0,r4 # load H
+
+ vspltisb $xC2,-16 # 0xf0
+ vspltisb $t0,1 # one
+ vaddubm $xC2,$xC2,$xC2 # 0xe0
+ vxor $zero,$zero,$zero
+ vor $xC2,$xC2,$t0 # 0xe1
+ vsldoi $xC2,$xC2,$zero,15 # 0xe1...
+ vsldoi $t1,$zero,$t0,1 # ...1
+ vaddubm $xC2,$xC2,$xC2 # 0xc2...
+ vspltisb $t2,7
+ vor $xC2,$xC2,$t1 # 0xc2....01
+ vspltb $t1,$H,0 # most significant byte
+ vsl $H,$H,$t0 # H<<=1
+ vsrab $t1,$t1,$t2 # broadcast carry bit
+ vand $t1,$t1,$xC2
+ vxor $IN,$H,$t1 # twisted H
+
+ vsldoi $H,$IN,$IN,8 # twist even more ...
+ vsldoi $xC2,$zero,$xC2,8 # 0xc2.0
+ vsldoi $Hl,$zero,$H,8 # ... and split
+ vsldoi $Hh,$H,$zero,8
+
+ stvx_u $xC2,0,r3 # save pre-computed table
+ stvx_u $Hl,r8,r3
+ li r8,0x40
+ stvx_u $H, r9,r3
+ li r9,0x50
+ stvx_u $Hh,r10,r3
+ li r10,0x60
+
+ vpmsumd $Xl,$IN,$Hl # H.lo·H.lo
+ vpmsumd $Xm,$IN,$H # H.hi·H.lo+H.lo·H.hi
+ vpmsumd $Xh,$IN,$Hh # H.hi·H.hi
+
+ vpmsumd $t2,$Xl,$xC2 # 1st reduction phase
+
+ vsldoi $t0,$Xm,$zero,8
+ vsldoi $t1,$zero,$Xm,8
+ vxor $Xl,$Xl,$t0
+ vxor $Xh,$Xh,$t1
+
+ vsldoi $Xl,$Xl,$Xl,8
+ vxor $Xl,$Xl,$t2
+
+ vsldoi $t1,$Xl,$Xl,8 # 2nd reduction phase
+ vpmsumd $Xl,$Xl,$xC2
+ vxor $t1,$t1,$Xh
+ vxor $IN1,$Xl,$t1
+
+ vsldoi $H2,$IN1,$IN1,8
+ vsldoi $H2l,$zero,$H2,8
+ vsldoi $H2h,$H2,$zero,8
+
+ stvx_u $H2l,r8,r3 # save H^2
+ li r8,0x70
+ stvx_u $H2,r9,r3
+ li r9,0x80
+ stvx_u $H2h,r10,r3
+ li r10,0x90
+___
+{
+my ($t4,$t5,$t6) = ($Hl,$H,$Hh);
+$code.=<<___;
+ vpmsumd $Xl,$IN,$H2l # H.lo·H^2.lo
+ vpmsumd $Xl1,$IN1,$H2l # H^2.lo·H^2.lo
+ vpmsumd $Xm,$IN,$H2 # H.hi·H^2.lo+H.lo·H^2.hi
+ vpmsumd $Xm1,$IN1,$H2 # H^2.hi·H^2.lo+H^2.lo·H^2.hi
+ vpmsumd $Xh,$IN,$H2h # H.hi·H^2.hi
+ vpmsumd $Xh1,$IN1,$H2h # H^2.hi·H^2.hi
+
+ vpmsumd $t2,$Xl,$xC2 # 1st reduction phase
+ vpmsumd $t6,$Xl1,$xC2 # 1st reduction phase
+
+ vsldoi $t0,$Xm,$zero,8
+ vsldoi $t1,$zero,$Xm,8
+ vsldoi $t4,$Xm1,$zero,8
+ vsldoi $t5,$zero,$Xm1,8
+ vxor $Xl,$Xl,$t0
+ vxor $Xh,$Xh,$t1
+ vxor $Xl1,$Xl1,$t4
+ vxor $Xh1,$Xh1,$t5
+
+ vsldoi $Xl,$Xl,$Xl,8
+ vsldoi $Xl1,$Xl1,$Xl1,8
+ vxor $Xl,$Xl,$t2
+ vxor $Xl1,$Xl1,$t6
+
+ vsldoi $t1,$Xl,$Xl,8 # 2nd reduction phase
+ vsldoi $t5,$Xl1,$Xl1,8 # 2nd reduction phase
+ vpmsumd $Xl,$Xl,$xC2
+ vpmsumd $Xl1,$Xl1,$xC2
+ vxor $t1,$t1,$Xh
+ vxor $t5,$t5,$Xh1
+ vxor $Xl,$Xl,$t1
+ vxor $Xl1,$Xl1,$t5
+
+ vsldoi $H,$Xl,$Xl,8
+ vsldoi $H2,$Xl1,$Xl1,8
+ vsldoi $Hl,$zero,$H,8
+ vsldoi $Hh,$H,$zero,8
+ vsldoi $H2l,$zero,$H2,8
+ vsldoi $H2h,$H2,$zero,8
+
+ stvx_u $Hl,r8,r3 # save H^3
+ li r8,0xa0
+ stvx_u $H,r9,r3
+ li r9,0xb0
+ stvx_u $Hh,r10,r3
+ li r10,0xc0
+ stvx_u $H2l,r8,r3 # save H^4
+ stvx_u $H2,r9,r3
+ stvx_u $H2h,r10,r3
+
+ mtspr 256,$vrsave
+ blr
+ .long 0
+ .byte 0,12,0x14,0,0,0,2,0
+ .long 0
+.size .gcm_init_p8,.-.gcm_init_p8
+___
+}
+$code.=<<___;
+.globl .gcm_gmult_p8
+.align 5
+.gcm_gmult_p8:
+ lis r0,0xfff8
+ li r8,0x10
+ mfspr $vrsave,256
+ li r9,0x20
+ mtspr 256,r0
+ li r10,0x30
+ lvx_u $IN,0,$Xip # load Xi
+
+ lvx_u $Hl,r8,$Htbl # load pre-computed table
+ le?lvsl $lemask,r0,r0
+ lvx_u $H, r9,$Htbl
+ le?vspltisb $t0,0x07
+ lvx_u $Hh,r10,$Htbl
+ le?vxor $lemask,$lemask,$t0
+ lvx_u $xC2,0,$Htbl
+ le?vperm $IN,$IN,$IN,$lemask
+ vxor $zero,$zero,$zero
+
+ vpmsumd $Xl,$IN,$Hl # H.lo·Xi.lo
+ vpmsumd $Xm,$IN,$H # H.hi·Xi.lo+H.lo·Xi.hi
+ vpmsumd $Xh,$IN,$Hh # H.hi·Xi.hi
+
+ vpmsumd $t2,$Xl,$xC2 # 1st reduction phase
+
+ vsldoi $t0,$Xm,$zero,8
+ vsldoi $t1,$zero,$Xm,8
+ vxor $Xl,$Xl,$t0
+ vxor $Xh,$Xh,$t1
+
+ vsldoi $Xl,$Xl,$Xl,8
+ vxor $Xl,$Xl,$t2
+
+ vsldoi $t1,$Xl,$Xl,8 # 2nd reduction phase
+ vpmsumd $Xl,$Xl,$xC2
+ vxor $t1,$t1,$Xh
+ vxor $Xl,$Xl,$t1
+
+ le?vperm $Xl,$Xl,$Xl,$lemask
+ stvx_u $Xl,0,$Xip # write out Xi
+
+ mtspr 256,$vrsave
+ blr
+ .long 0
+ .byte 0,12,0x14,0,0,0,2,0
+ .long 0
+.size .gcm_gmult_p8,.-.gcm_gmult_p8
+
+.globl .gcm_ghash_p8
+.align 5
+.gcm_ghash_p8:
+ li r0,-4096
+ li r8,0x10
+ mfspr $vrsave,256
+ li r9,0x20
+ mtspr 256,r0
+ li r10,0x30
+ lvx_u $Xl,0,$Xip # load Xi
+
+ lvx_u $Hl,r8,$Htbl # load pre-computed table
+ li r8,0x40
+ le?lvsl $lemask,r0,r0
+ lvx_u $H, r9,$Htbl
+ li r9,0x50
+ le?vspltisb $t0,0x07
+ lvx_u $Hh,r10,$Htbl
+ li r10,0x60
+ le?vxor $lemask,$lemask,$t0
+ lvx_u $xC2,0,$Htbl
+ le?vperm $Xl,$Xl,$Xl,$lemask
+ vxor $zero,$zero,$zero
+
+ ${UCMP}i $len,64
+ bge Lgcm_ghash_p8_4x
+
+ lvx_u $IN,0,$inp
+ addi $inp,$inp,16
+ subic. $len,$len,16
+ le?vperm $IN,$IN,$IN,$lemask
+ vxor $IN,$IN,$Xl
+ beq Lshort
+
+ lvx_u $H2l,r8,$Htbl # load H^2
+ li r8,16
+ lvx_u $H2, r9,$Htbl
+ add r9,$inp,$len # end of input
+ lvx_u $H2h,r10,$Htbl
+ be?b Loop_2x
+
+.align 5
+Loop_2x:
+ lvx_u $IN1,0,$inp
+ le?vperm $IN1,$IN1,$IN1,$lemask
+
+ subic $len,$len,32
+ vpmsumd $Xl,$IN,$H2l # H^2.lo·Xi.lo
+ vpmsumd $Xl1,$IN1,$Hl # H.lo·Xi+1.lo
+ subfe r0,r0,r0 # borrow?-1:0
+ vpmsumd $Xm,$IN,$H2 # H^2.hi·Xi.lo+H^2.lo·Xi.hi
+ vpmsumd $Xm1,$IN1,$H # H.hi·Xi+1.lo+H.lo·Xi+1.hi
+ and r0,r0,$len
+ vpmsumd $Xh,$IN,$H2h # H^2.hi·Xi.hi
+ vpmsumd $Xh1,$IN1,$Hh # H.hi·Xi+1.hi
+ add $inp,$inp,r0
+
+ vxor $Xl,$Xl,$Xl1
+ vxor $Xm,$Xm,$Xm1
+
+ vpmsumd $t2,$Xl,$xC2 # 1st reduction phase
+
+ vsldoi $t0,$Xm,$zero,8
+ vsldoi $t1,$zero,$Xm,8
+ vxor $Xh,$Xh,$Xh1
+ vxor $Xl,$Xl,$t0
+ vxor $Xh,$Xh,$t1
+
+ vsldoi $Xl,$Xl,$Xl,8
+ vxor $Xl,$Xl,$t2
+ lvx_u $IN,r8,$inp
+ addi $inp,$inp,32
+
+ vsldoi $t1,$Xl,$Xl,8 # 2nd reduction phase
+ vpmsumd $Xl,$Xl,$xC2
+ le?vperm $IN,$IN,$IN,$lemask
+ vxor $t1,$t1,$Xh
+ vxor $IN,$IN,$t1
+ vxor $IN,$IN,$Xl
+ $UCMP r9,$inp
+ bgt Loop_2x # done yet?
+
+ cmplwi $len,0
+ bne Leven
+
+Lshort:
+ vpmsumd $Xl,$IN,$Hl # H.lo·Xi.lo
+ vpmsumd $Xm,$IN,$H # H.hi·Xi.lo+H.lo·Xi.hi
+ vpmsumd $Xh,$IN,$Hh # H.hi·Xi.hi
+
+ vpmsumd $t2,$Xl,$xC2 # 1st reduction phase
+
+ vsldoi $t0,$Xm,$zero,8
+ vsldoi $t1,$zero,$Xm,8
+ vxor $Xl,$Xl,$t0
+ vxor $Xh,$Xh,$t1
+
+ vsldoi $Xl,$Xl,$Xl,8
+ vxor $Xl,$Xl,$t2
+
+ vsldoi $t1,$Xl,$Xl,8 # 2nd reduction phase
+ vpmsumd $Xl,$Xl,$xC2
+ vxor $t1,$t1,$Xh
+
+Leven:
+ vxor $Xl,$Xl,$t1
+ le?vperm $Xl,$Xl,$Xl,$lemask
+ stvx_u $Xl,0,$Xip # write out Xi
+
+ mtspr 256,$vrsave
+ blr
+ .long 0
+ .byte 0,12,0x14,0,0,0,4,0
+ .long 0
+___
+{
+my ($Xl3,$Xm2,$IN2,$H3l,$H3,$H3h,
+ $Xh3,$Xm3,$IN3,$H4l,$H4,$H4h) = map("v$_",(20..31));
+my $IN0=$IN;
+my ($H21l,$H21h,$loperm,$hiperm) = ($Hl,$Hh,$H2l,$H2h);
+
+$code.=<<___;
+.align 5
+.gcm_ghash_p8_4x:
+Lgcm_ghash_p8_4x:
+ $STU $sp,-$FRAME($sp)
+ li r10,`15+6*$SIZE_T`
+ li r11,`31+6*$SIZE_T`
+ stvx v20,r10,$sp
+ addi r10,r10,32
+ stvx v21,r11,$sp
+ addi r11,r11,32
+ stvx v22,r10,$sp
+ addi r10,r10,32
+ stvx v23,r11,$sp
+ addi r11,r11,32
+ stvx v24,r10,$sp
+ addi r10,r10,32
+ stvx v25,r11,$sp
+ addi r11,r11,32
+ stvx v26,r10,$sp
+ addi r10,r10,32
+ stvx v27,r11,$sp
+ addi r11,r11,32
+ stvx v28,r10,$sp
+ addi r10,r10,32
+ stvx v29,r11,$sp
+ addi r11,r11,32
+ stvx v30,r10,$sp
+ li r10,0x60
+ stvx v31,r11,$sp
+ li r0,-1
+ stw $vrsave,`$FRAME-4`($sp) # save vrsave
+ mtspr 256,r0 # preserve all AltiVec registers
+
+ lvsl $t0,0,r8 # 0x0001..0e0f
+ #lvx_u $H2l,r8,$Htbl # load H^2
+ li r8,0x70
+ lvx_u $H2, r9,$Htbl
+ li r9,0x80
+ vspltisb $t1,8 # 0x0808..0808
+ #lvx_u $H2h,r10,$Htbl
+ li r10,0x90
+ lvx_u $H3l,r8,$Htbl # load H^3
+ li r8,0xa0
+ lvx_u $H3, r9,$Htbl
+ li r9,0xb0
+ lvx_u $H3h,r10,$Htbl
+ li r10,0xc0
+ lvx_u $H4l,r8,$Htbl # load H^4
+ li r8,0x10
+ lvx_u $H4, r9,$Htbl
+ li r9,0x20
+ lvx_u $H4h,r10,$Htbl
+ li r10,0x30
+
+ vsldoi $t2,$zero,$t1,8 # 0x0000..0808
+ vaddubm $hiperm,$t0,$t2 # 0x0001..1617
+ vaddubm $loperm,$t1,$hiperm # 0x0809..1e1f
+
+ $SHRI $len,$len,4 # this allows to use sign bit
+ # as carry
+ lvx_u $IN0,0,$inp # load input
+ lvx_u $IN1,r8,$inp
+ subic. $len,$len,8
+ lvx_u $IN2,r9,$inp
+ lvx_u $IN3,r10,$inp
+ addi $inp,$inp,0x40
+ le?vperm $IN0,$IN0,$IN0,$lemask
+ le?vperm $IN1,$IN1,$IN1,$lemask
+ le?vperm $IN2,$IN2,$IN2,$lemask
+ le?vperm $IN3,$IN3,$IN3,$lemask
+
+ vxor $Xh,$IN0,$Xl
+
+ vpmsumd $Xl1,$IN1,$H3l
+ vpmsumd $Xm1,$IN1,$H3
+ vpmsumd $Xh1,$IN1,$H3h
+
+ vperm $H21l,$H2,$H,$hiperm
+ vperm $t0,$IN2,$IN3,$loperm
+ vperm $H21h,$H2,$H,$loperm
+ vperm $t1,$IN2,$IN3,$hiperm
+ vpmsumd $Xm2,$IN2,$H2 # H^2.lo·Xi+2.hi+H^2.hi·Xi+2.lo
+ vpmsumd $Xl3,$t0,$H21l # H^2.lo·Xi+2.lo+H.lo·Xi+3.lo
+ vpmsumd $Xm3,$IN3,$H # H.hi·Xi+3.lo +H.lo·Xi+3.hi
+ vpmsumd $Xh3,$t1,$H21h # H^2.hi·Xi+2.hi+H.hi·Xi+3.hi
+
+ vxor $Xm2,$Xm2,$Xm1
+ vxor $Xl3,$Xl3,$Xl1
+ vxor $Xm3,$Xm3,$Xm2
+ vxor $Xh3,$Xh3,$Xh1
+
+ blt Ltail_4x
+
+Loop_4x:
+ lvx_u $IN0,0,$inp
+ lvx_u $IN1,r8,$inp
+ subic. $len,$len,4
+ lvx_u $IN2,r9,$inp
+ lvx_u $IN3,r10,$inp
+ addi $inp,$inp,0x40
+ le?vperm $IN1,$IN1,$IN1,$lemask
+ le?vperm $IN2,$IN2,$IN2,$lemask
+ le?vperm $IN3,$IN3,$IN3,$lemask
+ le?vperm $IN0,$IN0,$IN0,$lemask
+
+ vpmsumd $Xl,$Xh,$H4l # H^4.lo·Xi.lo
+ vpmsumd $Xm,$Xh,$H4 # H^4.hi·Xi.lo+H^4.lo·Xi.hi
+ vpmsumd $Xh,$Xh,$H4h # H^4.hi·Xi.hi
+ vpmsumd $Xl1,$IN1,$H3l
+ vpmsumd $Xm1,$IN1,$H3
+ vpmsumd $Xh1,$IN1,$H3h
+
+ vxor $Xl,$Xl,$Xl3
+ vxor $Xm,$Xm,$Xm3
+ vxor $Xh,$Xh,$Xh3
+ vperm $t0,$IN2,$IN3,$loperm
+ vperm $t1,$IN2,$IN3,$hiperm
+
+ vpmsumd $t2,$Xl,$xC2 # 1st reduction phase
+ vpmsumd $Xl3,$t0,$H21l # H.lo·Xi+3.lo +H^2.lo·Xi+2.lo
+ vpmsumd $Xh3,$t1,$H21h # H.hi·Xi+3.hi +H^2.hi·Xi+2.hi
+
+ vsldoi $t0,$Xm,$zero,8
+ vsldoi $t1,$zero,$Xm,8
+ vxor $Xl,$Xl,$t0
+ vxor $Xh,$Xh,$t1
+
+ vsldoi $Xl,$Xl,$Xl,8
+ vxor $Xl,$Xl,$t2
+
+ vsldoi $t1,$Xl,$Xl,8 # 2nd reduction phase
+ vpmsumd $Xm2,$IN2,$H2 # H^2.hi·Xi+2.lo+H^2.lo·Xi+2.hi
+ vpmsumd $Xm3,$IN3,$H # H.hi·Xi+3.lo +H.lo·Xi+3.hi
+ vpmsumd $Xl,$Xl,$xC2
+
+ vxor $Xl3,$Xl3,$Xl1
+ vxor $Xh3,$Xh3,$Xh1
+ vxor $Xh,$Xh,$IN0
+ vxor $Xm2,$Xm2,$Xm1
+ vxor $Xh,$Xh,$t1
+ vxor $Xm3,$Xm3,$Xm2
+ vxor $Xh,$Xh,$Xl
+ bge Loop_4x
+
+Ltail_4x:
+ vpmsumd $Xl,$Xh,$H4l # H^4.lo·Xi.lo
+ vpmsumd $Xm,$Xh,$H4 # H^4.hi·Xi.lo+H^4.lo·Xi.hi
+ vpmsumd $Xh,$Xh,$H4h # H^4.hi·Xi.hi
+
+ vxor $Xl,$Xl,$Xl3
+ vxor $Xm,$Xm,$Xm3
+
+ vpmsumd $t2,$Xl,$xC2 # 1st reduction phase
+
+ vsldoi $t0,$Xm,$zero,8
+ vsldoi $t1,$zero,$Xm,8
+ vxor $Xh,$Xh,$Xh3
+ vxor $Xl,$Xl,$t0
+ vxor $Xh,$Xh,$t1
+
+ vsldoi $Xl,$Xl,$Xl,8
+ vxor $Xl,$Xl,$t2
+
+ vsldoi $t1,$Xl,$Xl,8 # 2nd reduction phase
+ vpmsumd $Xl,$Xl,$xC2
+ vxor $t1,$t1,$Xh
+ vxor $Xl,$Xl,$t1
+
+ addic. $len,$len,4
+ beq Ldone_4x
+
+ lvx_u $IN0,0,$inp
+ ${UCMP}i $len,2
+ li $len,-4
+ blt Lone
+ lvx_u $IN1,r8,$inp
+ beq Ltwo
+
+Lthree:
+ lvx_u $IN2,r9,$inp
+ le?vperm $IN0,$IN0,$IN0,$lemask
+ le?vperm $IN1,$IN1,$IN1,$lemask
+ le?vperm $IN2,$IN2,$IN2,$lemask
+
+ vxor $Xh,$IN0,$Xl
+ vmr $H4l,$H3l
+ vmr $H4, $H3
+ vmr $H4h,$H3h
+
+ vperm $t0,$IN1,$IN2,$loperm
+ vperm $t1,$IN1,$IN2,$hiperm
+ vpmsumd $Xm2,$IN1,$H2 # H^2.lo·Xi+1.hi+H^2.hi·Xi+1.lo
+ vpmsumd $Xm3,$IN2,$H # H.hi·Xi+2.lo +H.lo·Xi+2.hi
+ vpmsumd $Xl3,$t0,$H21l # H^2.lo·Xi+1.lo+H.lo·Xi+2.lo
+ vpmsumd $Xh3,$t1,$H21h # H^2.hi·Xi+1.hi+H.hi·Xi+2.hi
+
+ vxor $Xm3,$Xm3,$Xm2
+ b Ltail_4x
+
+.align 4
+Ltwo:
+ le?vperm $IN0,$IN0,$IN0,$lemask
+ le?vperm $IN1,$IN1,$IN1,$lemask
+
+ vxor $Xh,$IN0,$Xl
+ vperm $t0,$zero,$IN1,$loperm
+ vperm $t1,$zero,$IN1,$hiperm
+
+ vsldoi $H4l,$zero,$H2,8
+ vmr $H4, $H2
+ vsldoi $H4h,$H2,$zero,8
+
+ vpmsumd $Xl3,$t0, $H21l # H.lo·Xi+1.lo
+ vpmsumd $Xm3,$IN1,$H # H.hi·Xi+1.lo+H.lo·Xi+2.hi
+ vpmsumd $Xh3,$t1, $H21h # H.hi·Xi+1.hi
+
+ b Ltail_4x
+
+.align 4
+Lone:
+ le?vperm $IN0,$IN0,$IN0,$lemask
+
+ vsldoi $H4l,$zero,$H,8
+ vmr $H4, $H
+ vsldoi $H4h,$H,$zero,8
+
+ vxor $Xh,$IN0,$Xl
+ vxor $Xl3,$Xl3,$Xl3
+ vxor $Xm3,$Xm3,$Xm3
+ vxor $Xh3,$Xh3,$Xh3
+
+ b Ltail_4x
+
+Ldone_4x:
+ le?vperm $Xl,$Xl,$Xl,$lemask
+ stvx_u $Xl,0,$Xip # write out Xi
+
+ li r10,`15+6*$SIZE_T`
+ li r11,`31+6*$SIZE_T`
+ mtspr 256,$vrsave
+ lvx v20,r10,$sp
+ addi r10,r10,32
+ lvx v21,r11,$sp
+ addi r11,r11,32
+ lvx v22,r10,$sp
+ addi r10,r10,32
+ lvx v23,r11,$sp
+ addi r11,r11,32
+ lvx v24,r10,$sp
+ addi r10,r10,32
+ lvx v25,r11,$sp
+ addi r11,r11,32
+ lvx v26,r10,$sp
+ addi r10,r10,32
+ lvx v27,r11,$sp
+ addi r11,r11,32
+ lvx v28,r10,$sp
+ addi r10,r10,32
+ lvx v29,r11,$sp
+ addi r11,r11,32
+ lvx v30,r10,$sp
+ lvx v31,r11,$sp
+ addi $sp,$sp,$FRAME
+ blr
+ .long 0
+ .byte 0,12,0x04,0,0x80,0,4,0
+ .long 0
+___
+}
+$code.=<<___;
+.size .gcm_ghash_p8,.-.gcm_ghash_p8
+
+.asciz "GHASH for PowerISA 2.07, CRYPTOGAMS by <appro\@openssl.org>"
+.align 2
+___
+
+foreach (split("\n",$code)) {
+ s/\`([^\`]*)\`/eval $1/geo;
+
+ if ($flavour =~ /le$/o) { # little-endian
+ s/le\?//o or
+ s/be\?/#be#/o;
+ } else {
+ s/le\?/#le#/o or
+ s/be\?//o;
+ }
+ print $_,"\n";
+}
+
+close STDOUT; # enforce flush