aboutsummaryrefslogtreecommitdiff
path: root/openssl-1.1.0h/crypto/asn1/a_int.c
diff options
context:
space:
mode:
Diffstat (limited to 'openssl-1.1.0h/crypto/asn1/a_int.c')
-rw-r--r--openssl-1.1.0h/crypto/asn1/a_int.c630
1 files changed, 630 insertions, 0 deletions
diff --git a/openssl-1.1.0h/crypto/asn1/a_int.c b/openssl-1.1.0h/crypto/asn1/a_int.c
new file mode 100644
index 0000000..217650a
--- /dev/null
+++ b/openssl-1.1.0h/crypto/asn1/a_int.c
@@ -0,0 +1,630 @@
+/*
+ * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved.
+ *
+ * Licensed under the OpenSSL license (the "License"). You may not use
+ * this file except in compliance with the License. You can obtain a copy
+ * in the file LICENSE in the source distribution or at
+ * https://www.openssl.org/source/license.html
+ */
+
+#include <stdio.h>
+#include "internal/cryptlib.h"
+#include "internal/numbers.h"
+#include <limits.h>
+#include <openssl/asn1.h>
+#include <openssl/bn.h>
+#include "asn1_locl.h"
+
+ASN1_INTEGER *ASN1_INTEGER_dup(const ASN1_INTEGER *x)
+{
+ return ASN1_STRING_dup(x);
+}
+
+int ASN1_INTEGER_cmp(const ASN1_INTEGER *x, const ASN1_INTEGER *y)
+{
+ int neg, ret;
+ /* Compare signs */
+ neg = x->type & V_ASN1_NEG;
+ if (neg != (y->type & V_ASN1_NEG)) {
+ if (neg)
+ return -1;
+ else
+ return 1;
+ }
+
+ ret = ASN1_STRING_cmp(x, y);
+
+ if (neg)
+ return -ret;
+ else
+ return ret;
+}
+
+/*-
+ * This converts a big endian buffer and sign into its content encoding.
+ * This is used for INTEGER and ENUMERATED types.
+ * The internal representation is an ASN1_STRING whose data is a big endian
+ * representation of the value, ignoring the sign. The sign is determined by
+ * the type: if type & V_ASN1_NEG is true it is negative, otherwise positive.
+ *
+ * Positive integers are no problem: they are almost the same as the DER
+ * encoding, except if the first byte is >= 0x80 we need to add a zero pad.
+ *
+ * Negative integers are a bit trickier...
+ * The DER representation of negative integers is in 2s complement form.
+ * The internal form is converted by complementing each octet and finally
+ * adding one to the result. This can be done less messily with a little trick.
+ * If the internal form has trailing zeroes then they will become FF by the
+ * complement and 0 by the add one (due to carry) so just copy as many trailing
+ * zeros to the destination as there are in the source. The carry will add one
+ * to the last none zero octet: so complement this octet and add one and finally
+ * complement any left over until you get to the start of the string.
+ *
+ * Padding is a little trickier too. If the first bytes is > 0x80 then we pad
+ * with 0xff. However if the first byte is 0x80 and one of the following bytes
+ * is non-zero we pad with 0xff. The reason for this distinction is that 0x80
+ * followed by optional zeros isn't padded.
+ */
+
+/*
+ * If |pad| is zero, the operation is effectively reduced to memcpy,
+ * and if |pad| is 0xff, then it performs two's complement, ~dst + 1.
+ * Note that in latter case sequence of zeros yields itself, and so
+ * does 0x80 followed by any number of zeros. These properties are
+ * used elsewhere below...
+ */
+static void twos_complement(unsigned char *dst, const unsigned char *src,
+ size_t len, unsigned char pad)
+{
+ unsigned int carry = pad & 1;
+
+ /* Begin at the end of the encoding */
+ dst += len;
+ src += len;
+ /* two's complement value: ~value + 1 */
+ while (len-- != 0) {
+ *(--dst) = (unsigned char)(carry += *(--src) ^ pad);
+ carry >>= 8;
+ }
+}
+
+static size_t i2c_ibuf(const unsigned char *b, size_t blen, int neg,
+ unsigned char **pp)
+{
+ unsigned int pad = 0;
+ size_t ret, i;
+ unsigned char *p, pb = 0;
+
+ if (b != NULL && blen) {
+ ret = blen;
+ i = b[0];
+ if (!neg && (i > 127)) {
+ pad = 1;
+ pb = 0;
+ } else if (neg) {
+ pb = 0xFF;
+ if (i > 128) {
+ pad = 1;
+ } else if (i == 128) {
+ /*
+ * Special case [of minimal negative for given length]:
+ * if any other bytes non zero we pad, otherwise we don't.
+ */
+ for (pad = 0, i = 1; i < blen; i++)
+ pad |= b[i];
+ pb = pad != 0 ? 0xffU : 0;
+ pad = pb & 1;
+ }
+ }
+ ret += pad;
+ } else {
+ ret = 1;
+ blen = 0; /* reduce '(b == NULL || blen == 0)' to '(blen == 0)' */
+ }
+
+ if (pp == NULL || (p = *pp) == NULL)
+ return ret;
+
+ /*
+ * This magically handles all corner cases, such as '(b == NULL ||
+ * blen == 0)', non-negative value, "negative" zero, 0x80 followed
+ * by any number of zeros...
+ */
+ *p = pb;
+ p += pad; /* yes, p[0] can be written twice, but it's little
+ * price to pay for eliminated branches */
+ twos_complement(p, b, blen, pb);
+
+ *pp += ret;
+ return ret;
+}
+
+/*
+ * convert content octets into a big endian buffer. Returns the length
+ * of buffer or 0 on error: for malformed INTEGER. If output buffer is
+ * NULL just return length.
+ */
+
+static size_t c2i_ibuf(unsigned char *b, int *pneg,
+ const unsigned char *p, size_t plen)
+{
+ int neg, pad;
+ /* Zero content length is illegal */
+ if (plen == 0) {
+ ASN1err(ASN1_F_C2I_IBUF, ASN1_R_ILLEGAL_ZERO_CONTENT);
+ return 0;
+ }
+ neg = p[0] & 0x80;
+ if (pneg)
+ *pneg = neg;
+ /* Handle common case where length is 1 octet separately */
+ if (plen == 1) {
+ if (b != NULL) {
+ if (neg)
+ b[0] = (p[0] ^ 0xFF) + 1;
+ else
+ b[0] = p[0];
+ }
+ return 1;
+ }
+
+ pad = 0;
+ if (p[0] == 0) {
+ pad = 1;
+ } else if (p[0] == 0xFF) {
+ size_t i;
+
+ /*
+ * Special case [of "one less minimal negative" for given length]:
+ * if any other bytes non zero it was padded, otherwise not.
+ */
+ for (pad = 0, i = 1; i < plen; i++)
+ pad |= p[i];
+ pad = pad != 0 ? 1 : 0;
+ }
+ /* reject illegal padding: first two octets MSB can't match */
+ if (pad && (neg == (p[1] & 0x80))) {
+ ASN1err(ASN1_F_C2I_IBUF, ASN1_R_ILLEGAL_PADDING);
+ return 0;
+ }
+
+ /* skip over pad */
+ p += pad;
+ plen -= pad;
+
+ if (b != NULL)
+ twos_complement(b, p, plen, neg ? 0xffU : 0);
+
+ return plen;
+}
+
+int i2c_ASN1_INTEGER(ASN1_INTEGER *a, unsigned char **pp)
+{
+ return i2c_ibuf(a->data, a->length, a->type & V_ASN1_NEG, pp);
+}
+
+/* Convert big endian buffer into uint64_t, return 0 on error */
+static int asn1_get_uint64(uint64_t *pr, const unsigned char *b, size_t blen)
+{
+ size_t i;
+ uint64_t r;
+
+ if (blen > sizeof(*pr)) {
+ ASN1err(ASN1_F_ASN1_GET_UINT64, ASN1_R_TOO_LARGE);
+ return 0;
+ }
+ if (b == NULL)
+ return 0;
+ for (r = 0, i = 0; i < blen; i++) {
+ r <<= 8;
+ r |= b[i];
+ }
+ *pr = r;
+ return 1;
+}
+
+/*
+ * Write uint64_t to big endian buffer and return offset to first
+ * written octet. In other words it returns offset in range from 0
+ * to 7, with 0 denoting 8 written octets and 7 - one.
+ */
+static size_t asn1_put_uint64(unsigned char b[sizeof(uint64_t)], uint64_t r)
+{
+ size_t off = sizeof(uint64_t);
+
+ do {
+ b[--off] = (unsigned char)r;
+ } while (r >>= 8);
+
+ return off;
+}
+
+/*
+ * Absolute value of INT64_MIN: we can't just use -INT64_MIN as gcc produces
+ * overflow warnings.
+ */
+#define ABS_INT64_MIN ((uint64_t)INT64_MAX + (-(INT64_MIN + INT64_MAX)))
+
+/* signed version of asn1_get_uint64 */
+static int asn1_get_int64(int64_t *pr, const unsigned char *b, size_t blen,
+ int neg)
+{
+ uint64_t r;
+ if (asn1_get_uint64(&r, b, blen) == 0)
+ return 0;
+ if (neg) {
+ if (r <= INT64_MAX) {
+ /* Most significant bit is guaranteed to be clear, negation
+ * is guaranteed to be meaningful in platform-neutral sense. */
+ *pr = -(int64_t)r;
+ } else if (r == ABS_INT64_MIN) {
+ /* This never happens if INT64_MAX == ABS_INT64_MIN, e.g.
+ * on ones'-complement system. */
+ *pr = (int64_t)(0 - r);
+ } else {
+ ASN1err(ASN1_F_ASN1_GET_INT64, ASN1_R_TOO_SMALL);
+ return 0;
+ }
+ } else {
+ if (r <= INT64_MAX) {
+ *pr = (int64_t)r;
+ } else {
+ ASN1err(ASN1_F_ASN1_GET_INT64, ASN1_R_TOO_LARGE);
+ return 0;
+ }
+ }
+ return 1;
+}
+
+/* Convert ASN1 INTEGER content octets to ASN1_INTEGER structure */
+ASN1_INTEGER *c2i_ASN1_INTEGER(ASN1_INTEGER **a, const unsigned char **pp,
+ long len)
+{
+ ASN1_INTEGER *ret = NULL;
+ size_t r;
+ int neg;
+
+ r = c2i_ibuf(NULL, NULL, *pp, len);
+
+ if (r == 0)
+ return NULL;
+
+ if ((a == NULL) || ((*a) == NULL)) {
+ ret = ASN1_INTEGER_new();
+ if (ret == NULL)
+ return NULL;
+ ret->type = V_ASN1_INTEGER;
+ } else
+ ret = *a;
+
+ if (ASN1_STRING_set(ret, NULL, r) == 0)
+ goto err;
+
+ c2i_ibuf(ret->data, &neg, *pp, len);
+
+ if (neg)
+ ret->type |= V_ASN1_NEG;
+
+ *pp += len;
+ if (a != NULL)
+ (*a) = ret;
+ return ret;
+ err:
+ ASN1err(ASN1_F_C2I_ASN1_INTEGER, ERR_R_MALLOC_FAILURE);
+ if ((a == NULL) || (*a != ret))
+ ASN1_INTEGER_free(ret);
+ return NULL;
+}
+
+static int asn1_string_get_int64(int64_t *pr, const ASN1_STRING *a, int itype)
+{
+ if (a == NULL) {
+ ASN1err(ASN1_F_ASN1_STRING_GET_INT64, ERR_R_PASSED_NULL_PARAMETER);
+ return 0;
+ }
+ if ((a->type & ~V_ASN1_NEG) != itype) {
+ ASN1err(ASN1_F_ASN1_STRING_GET_INT64, ASN1_R_WRONG_INTEGER_TYPE);
+ return 0;
+ }
+ return asn1_get_int64(pr, a->data, a->length, a->type & V_ASN1_NEG);
+}
+
+static int asn1_string_set_int64(ASN1_STRING *a, int64_t r, int itype)
+{
+ unsigned char tbuf[sizeof(r)];
+ size_t off;
+
+ a->type = itype;
+ if (r < 0) {
+ /* Most obvious '-r' triggers undefined behaviour for most
+ * common INT64_MIN. Even though below '0 - (uint64_t)r' can
+ * appear two's-complement centric, it does produce correct/
+ * expected result even on one's-complement. This is because
+ * cast to unsigned has to change bit pattern... */
+ off = asn1_put_uint64(tbuf, 0 - (uint64_t)r);
+ a->type |= V_ASN1_NEG;
+ } else {
+ off = asn1_put_uint64(tbuf, r);
+ a->type &= ~V_ASN1_NEG;
+ }
+ return ASN1_STRING_set(a, tbuf + off, sizeof(tbuf) - off);
+}
+
+static int asn1_string_get_uint64(uint64_t *pr, const ASN1_STRING *a,
+ int itype)
+{
+ if (a == NULL) {
+ ASN1err(ASN1_F_ASN1_STRING_GET_UINT64, ERR_R_PASSED_NULL_PARAMETER);
+ return 0;
+ }
+ if ((a->type & ~V_ASN1_NEG) != itype) {
+ ASN1err(ASN1_F_ASN1_STRING_GET_UINT64, ASN1_R_WRONG_INTEGER_TYPE);
+ return 0;
+ }
+ if (a->type & V_ASN1_NEG) {
+ ASN1err(ASN1_F_ASN1_STRING_GET_UINT64, ASN1_R_ILLEGAL_NEGATIVE_VALUE);
+ return 0;
+ }
+ return asn1_get_uint64(pr, a->data, a->length);
+}
+
+static int asn1_string_set_uint64(ASN1_STRING *a, uint64_t r, int itype)
+{
+ unsigned char tbuf[sizeof(r)];
+ size_t off;
+
+ a->type = itype;
+ off = asn1_put_uint64(tbuf, r);
+ return ASN1_STRING_set(a, tbuf + off, sizeof(tbuf) - off);
+}
+
+/*
+ * This is a version of d2i_ASN1_INTEGER that ignores the sign bit of ASN1
+ * integers: some broken software can encode a positive INTEGER with its MSB
+ * set as negative (it doesn't add a padding zero).
+ */
+
+ASN1_INTEGER *d2i_ASN1_UINTEGER(ASN1_INTEGER **a, const unsigned char **pp,
+ long length)
+{
+ ASN1_INTEGER *ret = NULL;
+ const unsigned char *p;
+ unsigned char *s;
+ long len;
+ int inf, tag, xclass;
+ int i;
+
+ if ((a == NULL) || ((*a) == NULL)) {
+ if ((ret = ASN1_INTEGER_new()) == NULL)
+ return (NULL);
+ ret->type = V_ASN1_INTEGER;
+ } else
+ ret = (*a);
+
+ p = *pp;
+ inf = ASN1_get_object(&p, &len, &tag, &xclass, length);
+ if (inf & 0x80) {
+ i = ASN1_R_BAD_OBJECT_HEADER;
+ goto err;
+ }
+
+ if (tag != V_ASN1_INTEGER) {
+ i = ASN1_R_EXPECTING_AN_INTEGER;
+ goto err;
+ }
+
+ /*
+ * We must OPENSSL_malloc stuff, even for 0 bytes otherwise it signifies
+ * a missing NULL parameter.
+ */
+ s = OPENSSL_malloc((int)len + 1);
+ if (s == NULL) {
+ i = ERR_R_MALLOC_FAILURE;
+ goto err;
+ }
+ ret->type = V_ASN1_INTEGER;
+ if (len) {
+ if ((*p == 0) && (len != 1)) {
+ p++;
+ len--;
+ }
+ memcpy(s, p, (int)len);
+ p += len;
+ }
+
+ OPENSSL_free(ret->data);
+ ret->data = s;
+ ret->length = (int)len;
+ if (a != NULL)
+ (*a) = ret;
+ *pp = p;
+ return (ret);
+ err:
+ ASN1err(ASN1_F_D2I_ASN1_UINTEGER, i);
+ if ((a == NULL) || (*a != ret))
+ ASN1_INTEGER_free(ret);
+ return (NULL);
+}
+
+static ASN1_STRING *bn_to_asn1_string(const BIGNUM *bn, ASN1_STRING *ai,
+ int atype)
+{
+ ASN1_INTEGER *ret;
+ int len;
+
+ if (ai == NULL) {
+ ret = ASN1_STRING_type_new(atype);
+ } else {
+ ret = ai;
+ ret->type = atype;
+ }
+
+ if (ret == NULL) {
+ ASN1err(ASN1_F_BN_TO_ASN1_STRING, ERR_R_NESTED_ASN1_ERROR);
+ goto err;
+ }
+
+ if (BN_is_negative(bn) && !BN_is_zero(bn))
+ ret->type |= V_ASN1_NEG_INTEGER;
+
+ len = BN_num_bytes(bn);
+
+ if (len == 0)
+ len = 1;
+
+ if (ASN1_STRING_set(ret, NULL, len) == 0) {
+ ASN1err(ASN1_F_BN_TO_ASN1_STRING, ERR_R_MALLOC_FAILURE);
+ goto err;
+ }
+
+ /* Correct zero case */
+ if (BN_is_zero(bn))
+ ret->data[0] = 0;
+ else
+ len = BN_bn2bin(bn, ret->data);
+ ret->length = len;
+ return ret;
+ err:
+ if (ret != ai)
+ ASN1_INTEGER_free(ret);
+ return (NULL);
+}
+
+static BIGNUM *asn1_string_to_bn(const ASN1_INTEGER *ai, BIGNUM *bn,
+ int itype)
+{
+ BIGNUM *ret;
+
+ if ((ai->type & ~V_ASN1_NEG) != itype) {
+ ASN1err(ASN1_F_ASN1_STRING_TO_BN, ASN1_R_WRONG_INTEGER_TYPE);
+ return NULL;
+ }
+
+ ret = BN_bin2bn(ai->data, ai->length, bn);
+ if (ret == NULL) {
+ ASN1err(ASN1_F_ASN1_STRING_TO_BN, ASN1_R_BN_LIB);
+ return NULL;
+ }
+ if (ai->type & V_ASN1_NEG)
+ BN_set_negative(ret, 1);
+ return ret;
+}
+
+int ASN1_INTEGER_get_int64(int64_t *pr, const ASN1_INTEGER *a)
+{
+ return asn1_string_get_int64(pr, a, V_ASN1_INTEGER);
+}
+
+int ASN1_INTEGER_set_int64(ASN1_INTEGER *a, int64_t r)
+{
+ return asn1_string_set_int64(a, r, V_ASN1_INTEGER);
+}
+
+int ASN1_INTEGER_get_uint64(uint64_t *pr, const ASN1_INTEGER *a)
+{
+ return asn1_string_get_uint64(pr, a, V_ASN1_INTEGER);
+}
+
+int ASN1_INTEGER_set_uint64(ASN1_INTEGER *a, uint64_t r)
+{
+ return asn1_string_set_uint64(a, r, V_ASN1_INTEGER);
+}
+
+int ASN1_INTEGER_set(ASN1_INTEGER *a, long v)
+{
+ return ASN1_INTEGER_set_int64(a, v);
+}
+
+long ASN1_INTEGER_get(const ASN1_INTEGER *a)
+{
+ int i;
+ int64_t r;
+ if (a == NULL)
+ return 0;
+ i = ASN1_INTEGER_get_int64(&r, a);
+ if (i == 0)
+ return -1;
+ if (r > LONG_MAX || r < LONG_MIN)
+ return -1;
+ return (long)r;
+}
+
+ASN1_INTEGER *BN_to_ASN1_INTEGER(const BIGNUM *bn, ASN1_INTEGER *ai)
+{
+ return bn_to_asn1_string(bn, ai, V_ASN1_INTEGER);
+}
+
+BIGNUM *ASN1_INTEGER_to_BN(const ASN1_INTEGER *ai, BIGNUM *bn)
+{
+ return asn1_string_to_bn(ai, bn, V_ASN1_INTEGER);
+}
+
+int ASN1_ENUMERATED_get_int64(int64_t *pr, const ASN1_ENUMERATED *a)
+{
+ return asn1_string_get_int64(pr, a, V_ASN1_ENUMERATED);
+}
+
+int ASN1_ENUMERATED_set_int64(ASN1_ENUMERATED *a, int64_t r)
+{
+ return asn1_string_set_int64(a, r, V_ASN1_ENUMERATED);
+}
+
+int ASN1_ENUMERATED_set(ASN1_ENUMERATED *a, long v)
+{
+ return ASN1_ENUMERATED_set_int64(a, v);
+}
+
+long ASN1_ENUMERATED_get(const ASN1_ENUMERATED *a)
+{
+ int i;
+ int64_t r;
+ if (a == NULL)
+ return 0;
+ if ((a->type & ~V_ASN1_NEG) != V_ASN1_ENUMERATED)
+ return -1;
+ if (a->length > (int)sizeof(long))
+ return 0xffffffffL;
+ i = ASN1_ENUMERATED_get_int64(&r, a);
+ if (i == 0)
+ return -1;
+ if (r > LONG_MAX || r < LONG_MIN)
+ return -1;
+ return (long)r;
+}
+
+ASN1_ENUMERATED *BN_to_ASN1_ENUMERATED(const BIGNUM *bn, ASN1_ENUMERATED *ai)
+{
+ return bn_to_asn1_string(bn, ai, V_ASN1_ENUMERATED);
+}
+
+BIGNUM *ASN1_ENUMERATED_to_BN(const ASN1_ENUMERATED *ai, BIGNUM *bn)
+{
+ return asn1_string_to_bn(ai, bn, V_ASN1_ENUMERATED);
+}
+
+/* Internal functions used by x_int64.c */
+int c2i_uint64_int(uint64_t *ret, int *neg, const unsigned char **pp, long len)
+{
+ unsigned char buf[sizeof(uint64_t)];
+ size_t buflen;
+
+ buflen = c2i_ibuf(NULL, NULL, *pp, len);
+ if (buflen == 0)
+ return 0;
+ if (buflen > sizeof(uint64_t)) {
+ ASN1err(ASN1_F_C2I_UINT64_INT, ASN1_R_TOO_LARGE);
+ return 0;
+ }
+ (void)c2i_ibuf(buf, neg, *pp, len);
+ return asn1_get_uint64(ret, buf, buflen);
+}
+
+int i2c_uint64_int(unsigned char *p, uint64_t r, int neg)
+{
+ unsigned char buf[sizeof(uint64_t)];
+ size_t off;
+
+ off = asn1_put_uint64(buf, r);
+ return i2c_ibuf(buf + off, sizeof(buf) - off, neg, &p);
+}
+