aboutsummaryrefslogtreecommitdiff
path: root/openssl-1.1.0h/apps/speed.c
diff options
context:
space:
mode:
Diffstat (limited to 'openssl-1.1.0h/apps/speed.c')
-rw-r--r--openssl-1.1.0h/apps/speed.c3149
1 files changed, 3149 insertions, 0 deletions
diff --git a/openssl-1.1.0h/apps/speed.c b/openssl-1.1.0h/apps/speed.c
new file mode 100644
index 0000000..b0a7b6e
--- /dev/null
+++ b/openssl-1.1.0h/apps/speed.c
@@ -0,0 +1,3149 @@
+/*
+ * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
+ *
+ * Licensed under the OpenSSL license (the "License"). You may not use
+ * this file except in compliance with the License. You can obtain a copy
+ * in the file LICENSE in the source distribution or at
+ * https://www.openssl.org/source/license.html
+ */
+
+/* ====================================================================
+ * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
+ *
+ * Portions of the attached software ("Contribution") are developed by
+ * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
+ *
+ * The Contribution is licensed pursuant to the OpenSSL open source
+ * license provided above.
+ *
+ * The ECDH and ECDSA speed test software is originally written by
+ * Sumit Gupta of Sun Microsystems Laboratories.
+ *
+ */
+
+#undef SECONDS
+#define SECONDS 3
+#define PRIME_SECONDS 10
+#define RSA_SECONDS 10
+#define DSA_SECONDS 10
+#define ECDSA_SECONDS 10
+#define ECDH_SECONDS 10
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <math.h>
+#include "apps.h"
+#include <openssl/crypto.h>
+#include <openssl/rand.h>
+#include <openssl/err.h>
+#include <openssl/evp.h>
+#include <openssl/objects.h>
+#include <openssl/async.h>
+#if !defined(OPENSSL_SYS_MSDOS)
+# include OPENSSL_UNISTD
+#endif
+
+#if defined(_WIN32)
+# include <windows.h>
+#endif
+
+#include <openssl/bn.h>
+#ifndef OPENSSL_NO_DES
+# include <openssl/des.h>
+#endif
+#include <openssl/aes.h>
+#ifndef OPENSSL_NO_CAMELLIA
+# include <openssl/camellia.h>
+#endif
+#ifndef OPENSSL_NO_MD2
+# include <openssl/md2.h>
+#endif
+#ifndef OPENSSL_NO_MDC2
+# include <openssl/mdc2.h>
+#endif
+#ifndef OPENSSL_NO_MD4
+# include <openssl/md4.h>
+#endif
+#ifndef OPENSSL_NO_MD5
+# include <openssl/md5.h>
+#endif
+#include <openssl/hmac.h>
+#include <openssl/sha.h>
+#ifndef OPENSSL_NO_RMD160
+# include <openssl/ripemd.h>
+#endif
+#ifndef OPENSSL_NO_WHIRLPOOL
+# include <openssl/whrlpool.h>
+#endif
+#ifndef OPENSSL_NO_RC4
+# include <openssl/rc4.h>
+#endif
+#ifndef OPENSSL_NO_RC5
+# include <openssl/rc5.h>
+#endif
+#ifndef OPENSSL_NO_RC2
+# include <openssl/rc2.h>
+#endif
+#ifndef OPENSSL_NO_IDEA
+# include <openssl/idea.h>
+#endif
+#ifndef OPENSSL_NO_SEED
+# include <openssl/seed.h>
+#endif
+#ifndef OPENSSL_NO_BF
+# include <openssl/blowfish.h>
+#endif
+#ifndef OPENSSL_NO_CAST
+# include <openssl/cast.h>
+#endif
+#ifndef OPENSSL_NO_RSA
+# include <openssl/rsa.h>
+# include "./testrsa.h"
+#endif
+#include <openssl/x509.h>
+#ifndef OPENSSL_NO_DSA
+# include <openssl/dsa.h>
+# include "./testdsa.h"
+#endif
+#ifndef OPENSSL_NO_EC
+# include <openssl/ec.h>
+#endif
+#include <openssl/modes.h>
+
+#ifndef HAVE_FORK
+# if defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_WINDOWS)
+# define HAVE_FORK 0
+# else
+# define HAVE_FORK 1
+# endif
+#endif
+
+#if HAVE_FORK
+# undef NO_FORK
+#else
+# define NO_FORK
+#endif
+
+#undef BUFSIZE
+#define BUFSIZE (1024*16+1)
+#define MAX_MISALIGNMENT 63
+
+#define ALGOR_NUM 30
+#define SIZE_NUM 6
+#define PRIME_NUM 3
+#define RSA_NUM 7
+#define DSA_NUM 3
+
+#define EC_NUM 17
+#define MAX_ECDH_SIZE 256
+#define MISALIGN 64
+
+static volatile int run = 0;
+
+static int mr = 0;
+static int usertime = 1;
+
+typedef void *(*kdf_fn) (
+ const void *in, size_t inlen, void *out, size_t *xoutlen);
+
+typedef struct loopargs_st {
+ ASYNC_JOB *inprogress_job;
+ ASYNC_WAIT_CTX *wait_ctx;
+ unsigned char *buf;
+ unsigned char *buf2;
+ unsigned char *buf_malloc;
+ unsigned char *buf2_malloc;
+ unsigned int siglen;
+#ifndef OPENSSL_NO_RSA
+ RSA *rsa_key[RSA_NUM];
+#endif
+#ifndef OPENSSL_NO_DSA
+ DSA *dsa_key[DSA_NUM];
+#endif
+#ifndef OPENSSL_NO_EC
+ EC_KEY *ecdsa[EC_NUM];
+ EC_KEY *ecdh_a[EC_NUM];
+ EC_KEY *ecdh_b[EC_NUM];
+ unsigned char *secret_a;
+ unsigned char *secret_b;
+ size_t outlen;
+ kdf_fn kdf;
+#endif
+ EVP_CIPHER_CTX *ctx;
+ HMAC_CTX *hctx;
+ GCM128_CONTEXT *gcm_ctx;
+} loopargs_t;
+
+#ifndef OPENSSL_NO_MD2
+static int EVP_Digest_MD2_loop(void *args);
+#endif
+
+#ifndef OPENSSL_NO_MDC2
+static int EVP_Digest_MDC2_loop(void *args);
+#endif
+#ifndef OPENSSL_NO_MD4
+static int EVP_Digest_MD4_loop(void *args);
+#endif
+#ifndef OPENSSL_NO_MD5
+static int MD5_loop(void *args);
+static int HMAC_loop(void *args);
+#endif
+static int SHA1_loop(void *args);
+static int SHA256_loop(void *args);
+static int SHA512_loop(void *args);
+#ifndef OPENSSL_NO_WHIRLPOOL
+static int WHIRLPOOL_loop(void *args);
+#endif
+#ifndef OPENSSL_NO_RMD160
+static int EVP_Digest_RMD160_loop(void *args);
+#endif
+#ifndef OPENSSL_NO_RC4
+static int RC4_loop(void *args);
+#endif
+#ifndef OPENSSL_NO_DES
+static int DES_ncbc_encrypt_loop(void *args);
+static int DES_ede3_cbc_encrypt_loop(void *args);
+#endif
+static int AES_cbc_128_encrypt_loop(void *args);
+static int AES_cbc_192_encrypt_loop(void *args);
+static int AES_ige_128_encrypt_loop(void *args);
+static int AES_cbc_256_encrypt_loop(void *args);
+static int AES_ige_192_encrypt_loop(void *args);
+static int AES_ige_256_encrypt_loop(void *args);
+static int CRYPTO_gcm128_aad_loop(void *args);
+static int EVP_Update_loop(void *args);
+static int EVP_Digest_loop(void *args);
+#ifndef OPENSSL_NO_RSA
+static int RSA_sign_loop(void *args);
+static int RSA_verify_loop(void *args);
+#endif
+#ifndef OPENSSL_NO_DSA
+static int DSA_sign_loop(void *args);
+static int DSA_verify_loop(void *args);
+#endif
+#ifndef OPENSSL_NO_EC
+static int ECDSA_sign_loop(void *args);
+static int ECDSA_verify_loop(void *args);
+static int ECDH_compute_key_loop(void *args);
+#endif
+static int run_benchmark(int async_jobs, int (*loop_function)(void *), loopargs_t *loopargs);
+
+static double Time_F(int s);
+static void print_message(const char *s, long num, int length);
+static void pkey_print_message(const char *str, const char *str2,
+ long num, int bits, int sec);
+static void print_result(int alg, int run_no, int count, double time_used);
+#ifndef NO_FORK
+static int do_multi(int multi);
+#endif
+
+static const char *names[ALGOR_NUM] = {
+ "md2", "mdc2", "md4", "md5", "hmac(md5)", "sha1", "rmd160", "rc4",
+ "des cbc", "des ede3", "idea cbc", "seed cbc",
+ "rc2 cbc", "rc5-32/12 cbc", "blowfish cbc", "cast cbc",
+ "aes-128 cbc", "aes-192 cbc", "aes-256 cbc",
+ "camellia-128 cbc", "camellia-192 cbc", "camellia-256 cbc",
+ "evp", "sha256", "sha512", "whirlpool",
+ "aes-128 ige", "aes-192 ige", "aes-256 ige", "ghash"
+};
+
+static double results[ALGOR_NUM][SIZE_NUM];
+
+static const int lengths[SIZE_NUM] = {
+ 16, 64, 256, 1024, 8 * 1024, 16 * 1024
+};
+
+#ifndef OPENSSL_NO_RSA
+static double rsa_results[RSA_NUM][2];
+#endif
+#ifndef OPENSSL_NO_DSA
+static double dsa_results[DSA_NUM][2];
+#endif
+#ifndef OPENSSL_NO_EC
+static double ecdsa_results[EC_NUM][2];
+static double ecdh_results[EC_NUM][1];
+#endif
+
+#if !defined(OPENSSL_NO_DSA) || !defined(OPENSSL_NO_EC)
+static const char rnd_seed[] =
+ "string to make the random number generator think it has entropy";
+#endif
+
+#ifdef SIGALRM
+# if defined(__STDC__) || defined(sgi) || defined(_AIX)
+# define SIGRETTYPE void
+# else
+# define SIGRETTYPE int
+# endif
+
+static SIGRETTYPE sig_done(int sig);
+static SIGRETTYPE sig_done(int sig)
+{
+ signal(SIGALRM, sig_done);
+ run = 0;
+}
+#endif
+
+#define START 0
+#define STOP 1
+
+#if defined(_WIN32)
+
+# if !defined(SIGALRM)
+# define SIGALRM
+# endif
+static unsigned int lapse;
+static volatile unsigned int schlock;
+static void alarm_win32(unsigned int secs)
+{
+ lapse = secs * 1000;
+}
+
+# define alarm alarm_win32
+
+static DWORD WINAPI sleepy(VOID * arg)
+{
+ schlock = 1;
+ Sleep(lapse);
+ run = 0;
+ return 0;
+}
+
+static double Time_F(int s)
+{
+ double ret;
+ static HANDLE thr;
+
+ if (s == START) {
+ schlock = 0;
+ thr = CreateThread(NULL, 4096, sleepy, NULL, 0, NULL);
+ if (thr == NULL) {
+ DWORD err = GetLastError();
+ BIO_printf(bio_err, "unable to CreateThread (%lu)", err);
+ ExitProcess(err);
+ }
+ while (!schlock)
+ Sleep(0); /* scheduler spinlock */
+ ret = app_tminterval(s, usertime);
+ } else {
+ ret = app_tminterval(s, usertime);
+ if (run)
+ TerminateThread(thr, 0);
+ CloseHandle(thr);
+ }
+
+ return ret;
+}
+#else
+
+static double Time_F(int s)
+{
+ double ret = app_tminterval(s, usertime);
+ if (s == STOP)
+ alarm(0);
+ return ret;
+}
+#endif
+
+static void multiblock_speed(const EVP_CIPHER *evp_cipher);
+
+static int found(const char *name, const OPT_PAIR *pairs, int *result)
+{
+ for (; pairs->name; pairs++)
+ if (strcmp(name, pairs->name) == 0) {
+ *result = pairs->retval;
+ return 1;
+ }
+ return 0;
+}
+
+typedef enum OPTION_choice {
+ OPT_ERR = -1, OPT_EOF = 0, OPT_HELP,
+ OPT_ELAPSED, OPT_EVP, OPT_DECRYPT, OPT_ENGINE, OPT_MULTI,
+ OPT_MR, OPT_MB, OPT_MISALIGN, OPT_ASYNCJOBS
+} OPTION_CHOICE;
+
+OPTIONS speed_options[] = {
+ {OPT_HELP_STR, 1, '-', "Usage: %s [options] ciphers...\n"},
+ {OPT_HELP_STR, 1, '-', "Valid options are:\n"},
+ {"help", OPT_HELP, '-', "Display this summary"},
+ {"evp", OPT_EVP, 's', "Use specified EVP cipher"},
+ {"decrypt", OPT_DECRYPT, '-',
+ "Time decryption instead of encryption (only EVP)"},
+ {"mr", OPT_MR, '-', "Produce machine readable output"},
+ {"mb", OPT_MB, '-',
+ "Enable (tls1.1) multi-block mode on evp_cipher requested with -evp"},
+ {"misalign", OPT_MISALIGN, 'n', "Amount to mis-align buffers"},
+ {"elapsed", OPT_ELAPSED, '-',
+ "Measure time in real time instead of CPU user time"},
+#ifndef NO_FORK
+ {"multi", OPT_MULTI, 'p', "Run benchmarks in parallel"},
+#endif
+#ifndef OPENSSL_NO_ASYNC
+ {"async_jobs", OPT_ASYNCJOBS, 'p',
+ "Enable async mode and start pnum jobs"},
+#endif
+#ifndef OPENSSL_NO_ENGINE
+ {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"},
+#endif
+ {NULL},
+};
+
+#define D_MD2 0
+#define D_MDC2 1
+#define D_MD4 2
+#define D_MD5 3
+#define D_HMAC 4
+#define D_SHA1 5
+#define D_RMD160 6
+#define D_RC4 7
+#define D_CBC_DES 8
+#define D_EDE3_DES 9
+#define D_CBC_IDEA 10
+#define D_CBC_SEED 11
+#define D_CBC_RC2 12
+#define D_CBC_RC5 13
+#define D_CBC_BF 14
+#define D_CBC_CAST 15
+#define D_CBC_128_AES 16
+#define D_CBC_192_AES 17
+#define D_CBC_256_AES 18
+#define D_CBC_128_CML 19
+#define D_CBC_192_CML 20
+#define D_CBC_256_CML 21
+#define D_EVP 22
+#define D_SHA256 23
+#define D_SHA512 24
+#define D_WHIRLPOOL 25
+#define D_IGE_128_AES 26
+#define D_IGE_192_AES 27
+#define D_IGE_256_AES 28
+#define D_GHASH 29
+static OPT_PAIR doit_choices[] = {
+#ifndef OPENSSL_NO_MD2
+ {"md2", D_MD2},
+#endif
+#ifndef OPENSSL_NO_MDC2
+ {"mdc2", D_MDC2},
+#endif
+#ifndef OPENSSL_NO_MD4
+ {"md4", D_MD4},
+#endif
+#ifndef OPENSSL_NO_MD5
+ {"md5", D_MD5},
+ {"hmac", D_HMAC},
+#endif
+ {"sha1", D_SHA1},
+ {"sha256", D_SHA256},
+ {"sha512", D_SHA512},
+#ifndef OPENSSL_NO_WHIRLPOOL
+ {"whirlpool", D_WHIRLPOOL},
+#endif
+#ifndef OPENSSL_NO_RMD160
+ {"ripemd", D_RMD160},
+ {"rmd160", D_RMD160},
+ {"ripemd160", D_RMD160},
+#endif
+#ifndef OPENSSL_NO_RC4
+ {"rc4", D_RC4},
+#endif
+#ifndef OPENSSL_NO_DES
+ {"des-cbc", D_CBC_DES},
+ {"des-ede3", D_EDE3_DES},
+#endif
+ {"aes-128-cbc", D_CBC_128_AES},
+ {"aes-192-cbc", D_CBC_192_AES},
+ {"aes-256-cbc", D_CBC_256_AES},
+ {"aes-128-ige", D_IGE_128_AES},
+ {"aes-192-ige", D_IGE_192_AES},
+ {"aes-256-ige", D_IGE_256_AES},
+#ifndef OPENSSL_NO_RC2
+ {"rc2-cbc", D_CBC_RC2},
+ {"rc2", D_CBC_RC2},
+#endif
+#ifndef OPENSSL_NO_RC5
+ {"rc5-cbc", D_CBC_RC5},
+ {"rc5", D_CBC_RC5},
+#endif
+#ifndef OPENSSL_NO_IDEA
+ {"idea-cbc", D_CBC_IDEA},
+ {"idea", D_CBC_IDEA},
+#endif
+#ifndef OPENSSL_NO_SEED
+ {"seed-cbc", D_CBC_SEED},
+ {"seed", D_CBC_SEED},
+#endif
+#ifndef OPENSSL_NO_BF
+ {"bf-cbc", D_CBC_BF},
+ {"blowfish", D_CBC_BF},
+ {"bf", D_CBC_BF},
+#endif
+#ifndef OPENSSL_NO_CAST
+ {"cast-cbc", D_CBC_CAST},
+ {"cast", D_CBC_CAST},
+ {"cast5", D_CBC_CAST},
+#endif
+ {"ghash", D_GHASH},
+ {NULL}
+};
+
+#ifndef OPENSSL_NO_DSA
+# define R_DSA_512 0
+# define R_DSA_1024 1
+# define R_DSA_2048 2
+static OPT_PAIR dsa_choices[] = {
+ {"dsa512", R_DSA_512},
+ {"dsa1024", R_DSA_1024},
+ {"dsa2048", R_DSA_2048},
+ {NULL},
+};
+#endif
+
+#define R_RSA_512 0
+#define R_RSA_1024 1
+#define R_RSA_2048 2
+#define R_RSA_3072 3
+#define R_RSA_4096 4
+#define R_RSA_7680 5
+#define R_RSA_15360 6
+static OPT_PAIR rsa_choices[] = {
+ {"rsa512", R_RSA_512},
+ {"rsa1024", R_RSA_1024},
+ {"rsa2048", R_RSA_2048},
+ {"rsa3072", R_RSA_3072},
+ {"rsa4096", R_RSA_4096},
+ {"rsa7680", R_RSA_7680},
+ {"rsa15360", R_RSA_15360},
+ {NULL}
+};
+
+#define R_EC_P160 0
+#define R_EC_P192 1
+#define R_EC_P224 2
+#define R_EC_P256 3
+#define R_EC_P384 4
+#define R_EC_P521 5
+#define R_EC_K163 6
+#define R_EC_K233 7
+#define R_EC_K283 8
+#define R_EC_K409 9
+#define R_EC_K571 10
+#define R_EC_B163 11
+#define R_EC_B233 12
+#define R_EC_B283 13
+#define R_EC_B409 14
+#define R_EC_B571 15
+#define R_EC_X25519 16
+#ifndef OPENSSL_NO_EC
+static OPT_PAIR ecdsa_choices[] = {
+ {"ecdsap160", R_EC_P160},
+ {"ecdsap192", R_EC_P192},
+ {"ecdsap224", R_EC_P224},
+ {"ecdsap256", R_EC_P256},
+ {"ecdsap384", R_EC_P384},
+ {"ecdsap521", R_EC_P521},
+ {"ecdsak163", R_EC_K163},
+ {"ecdsak233", R_EC_K233},
+ {"ecdsak283", R_EC_K283},
+ {"ecdsak409", R_EC_K409},
+ {"ecdsak571", R_EC_K571},
+ {"ecdsab163", R_EC_B163},
+ {"ecdsab233", R_EC_B233},
+ {"ecdsab283", R_EC_B283},
+ {"ecdsab409", R_EC_B409},
+ {"ecdsab571", R_EC_B571},
+ {NULL}
+};
+
+static OPT_PAIR ecdh_choices[] = {
+ {"ecdhp160", R_EC_P160},
+ {"ecdhp192", R_EC_P192},
+ {"ecdhp224", R_EC_P224},
+ {"ecdhp256", R_EC_P256},
+ {"ecdhp384", R_EC_P384},
+ {"ecdhp521", R_EC_P521},
+ {"ecdhk163", R_EC_K163},
+ {"ecdhk233", R_EC_K233},
+ {"ecdhk283", R_EC_K283},
+ {"ecdhk409", R_EC_K409},
+ {"ecdhk571", R_EC_K571},
+ {"ecdhb163", R_EC_B163},
+ {"ecdhb233", R_EC_B233},
+ {"ecdhb283", R_EC_B283},
+ {"ecdhb409", R_EC_B409},
+ {"ecdhb571", R_EC_B571},
+ {"ecdhx25519", R_EC_X25519},
+ {NULL}
+};
+#endif
+
+#ifndef SIGALRM
+# define COND(d) (count < (d))
+# define COUNT(d) (d)
+#else
+# define COND(unused_cond) (run && count<0x7fffffff)
+# define COUNT(d) (count)
+#endif /* SIGALRM */
+
+static int testnum;
+
+/* Nb of iterations to do per algorithm and key-size */
+static long c[ALGOR_NUM][SIZE_NUM];
+
+#ifndef OPENSSL_NO_MD2
+static int EVP_Digest_MD2_loop(void *args)
+{
+ loopargs_t *tempargs = *(loopargs_t **)args;
+ unsigned char *buf = tempargs->buf;
+ unsigned char md2[MD2_DIGEST_LENGTH];
+ int count;
+
+ for (count = 0; COND(c[D_MD2][testnum]); count++) {
+ if (!EVP_Digest(buf, (size_t)lengths[testnum], md2, NULL, EVP_md2(),
+ NULL))
+ return -1;
+ }
+ return count;
+}
+#endif
+
+#ifndef OPENSSL_NO_MDC2
+static int EVP_Digest_MDC2_loop(void *args)
+{
+ loopargs_t *tempargs = *(loopargs_t **)args;
+ unsigned char *buf = tempargs->buf;
+ unsigned char mdc2[MDC2_DIGEST_LENGTH];
+ int count;
+
+ for (count = 0; COND(c[D_MDC2][testnum]); count++) {
+ if (!EVP_Digest(buf, (size_t)lengths[testnum], mdc2, NULL, EVP_mdc2(),
+ NULL))
+ return -1;
+ }
+ return count;
+}
+#endif
+
+#ifndef OPENSSL_NO_MD4
+static int EVP_Digest_MD4_loop(void *args)
+{
+ loopargs_t *tempargs = *(loopargs_t **)args;
+ unsigned char *buf = tempargs->buf;
+ unsigned char md4[MD4_DIGEST_LENGTH];
+ int count;
+
+ for (count = 0; COND(c[D_MD4][testnum]); count++) {
+ if (!EVP_Digest(buf, (size_t)lengths[testnum], md4, NULL, EVP_md4(),
+ NULL))
+ return -1;
+ }
+ return count;
+}
+#endif
+
+#ifndef OPENSSL_NO_MD5
+static int MD5_loop(void *args)
+{
+ loopargs_t *tempargs = *(loopargs_t **)args;
+ unsigned char *buf = tempargs->buf;
+ unsigned char md5[MD5_DIGEST_LENGTH];
+ int count;
+ for (count = 0; COND(c[D_MD5][testnum]); count++)
+ MD5(buf, lengths[testnum], md5);
+ return count;
+}
+
+static int HMAC_loop(void *args)
+{
+ loopargs_t *tempargs = *(loopargs_t **)args;
+ unsigned char *buf = tempargs->buf;
+ HMAC_CTX *hctx = tempargs->hctx;
+ unsigned char hmac[MD5_DIGEST_LENGTH];
+ int count;
+
+ for (count = 0; COND(c[D_HMAC][testnum]); count++) {
+ HMAC_Init_ex(hctx, NULL, 0, NULL, NULL);
+ HMAC_Update(hctx, buf, lengths[testnum]);
+ HMAC_Final(hctx, hmac, NULL);
+ }
+ return count;
+}
+#endif
+
+static int SHA1_loop(void *args)
+{
+ loopargs_t *tempargs = *(loopargs_t **)args;
+ unsigned char *buf = tempargs->buf;
+ unsigned char sha[SHA_DIGEST_LENGTH];
+ int count;
+ for (count = 0; COND(c[D_SHA1][testnum]); count++)
+ SHA1(buf, lengths[testnum], sha);
+ return count;
+}
+
+static int SHA256_loop(void *args)
+{
+ loopargs_t *tempargs = *(loopargs_t **)args;
+ unsigned char *buf = tempargs->buf;
+ unsigned char sha256[SHA256_DIGEST_LENGTH];
+ int count;
+ for (count = 0; COND(c[D_SHA256][testnum]); count++)
+ SHA256(buf, lengths[testnum], sha256);
+ return count;
+}
+
+static int SHA512_loop(void *args)
+{
+ loopargs_t *tempargs = *(loopargs_t **)args;
+ unsigned char *buf = tempargs->buf;
+ unsigned char sha512[SHA512_DIGEST_LENGTH];
+ int count;
+ for (count = 0; COND(c[D_SHA512][testnum]); count++)
+ SHA512(buf, lengths[testnum], sha512);
+ return count;
+}
+
+#ifndef OPENSSL_NO_WHIRLPOOL
+static int WHIRLPOOL_loop(void *args)
+{
+ loopargs_t *tempargs = *(loopargs_t **)args;
+ unsigned char *buf = tempargs->buf;
+ unsigned char whirlpool[WHIRLPOOL_DIGEST_LENGTH];
+ int count;
+ for (count = 0; COND(c[D_WHIRLPOOL][testnum]); count++)
+ WHIRLPOOL(buf, lengths[testnum], whirlpool);
+ return count;
+}
+#endif
+
+#ifndef OPENSSL_NO_RMD160
+static int EVP_Digest_RMD160_loop(void *args)
+{
+ loopargs_t *tempargs = *(loopargs_t **)args;
+ unsigned char *buf = tempargs->buf;
+ unsigned char rmd160[RIPEMD160_DIGEST_LENGTH];
+ int count;
+ for (count = 0; COND(c[D_RMD160][testnum]); count++) {
+ if (!EVP_Digest(buf, (size_t)lengths[testnum], &(rmd160[0]),
+ NULL, EVP_ripemd160(), NULL))
+ return -1;
+ }
+ return count;
+}
+#endif
+
+#ifndef OPENSSL_NO_RC4
+static RC4_KEY rc4_ks;
+static int RC4_loop(void *args)
+{
+ loopargs_t *tempargs = *(loopargs_t **)args;
+ unsigned char *buf = tempargs->buf;
+ int count;
+ for (count = 0; COND(c[D_RC4][testnum]); count++)
+ RC4(&rc4_ks, (size_t)lengths[testnum], buf, buf);
+ return count;
+}
+#endif
+
+#ifndef OPENSSL_NO_DES
+static unsigned char DES_iv[8];
+static DES_key_schedule sch;
+static DES_key_schedule sch2;
+static DES_key_schedule sch3;
+static int DES_ncbc_encrypt_loop(void *args)
+{
+ loopargs_t *tempargs = *(loopargs_t **)args;
+ unsigned char *buf = tempargs->buf;
+ int count;
+ for (count = 0; COND(c[D_CBC_DES][testnum]); count++)
+ DES_ncbc_encrypt(buf, buf, lengths[testnum], &sch,
+ &DES_iv, DES_ENCRYPT);
+ return count;
+}
+
+static int DES_ede3_cbc_encrypt_loop(void *args)
+{
+ loopargs_t *tempargs = *(loopargs_t **)args;
+ unsigned char *buf = tempargs->buf;
+ int count;
+ for (count = 0; COND(c[D_EDE3_DES][testnum]); count++)
+ DES_ede3_cbc_encrypt(buf, buf, lengths[testnum],
+ &sch, &sch2, &sch3,
+ &DES_iv, DES_ENCRYPT);
+ return count;
+}
+#endif
+
+#define MAX_BLOCK_SIZE 128
+
+static unsigned char iv[2 * MAX_BLOCK_SIZE / 8];
+static AES_KEY aes_ks1, aes_ks2, aes_ks3;
+static int AES_cbc_128_encrypt_loop(void *args)
+{
+ loopargs_t *tempargs = *(loopargs_t **)args;
+ unsigned char *buf = tempargs->buf;
+ int count;
+ for (count = 0; COND(c[D_CBC_128_AES][testnum]); count++)
+ AES_cbc_encrypt(buf, buf,
+ (size_t)lengths[testnum], &aes_ks1,
+ iv, AES_ENCRYPT);
+ return count;
+}
+
+static int AES_cbc_192_encrypt_loop(void *args)
+{
+ loopargs_t *tempargs = *(loopargs_t **)args;
+ unsigned char *buf = tempargs->buf;
+ int count;
+ for (count = 0; COND(c[D_CBC_192_AES][testnum]); count++)
+ AES_cbc_encrypt(buf, buf,
+ (size_t)lengths[testnum], &aes_ks2,
+ iv, AES_ENCRYPT);
+ return count;
+}
+
+static int AES_cbc_256_encrypt_loop(void *args)
+{
+ loopargs_t *tempargs = *(loopargs_t **)args;
+ unsigned char *buf = tempargs->buf;
+ int count;
+ for (count = 0; COND(c[D_CBC_256_AES][testnum]); count++)
+ AES_cbc_encrypt(buf, buf,
+ (size_t)lengths[testnum], &aes_ks3,
+ iv, AES_ENCRYPT);
+ return count;
+}
+
+static int AES_ige_128_encrypt_loop(void *args)
+{
+ loopargs_t *tempargs = *(loopargs_t **)args;
+ unsigned char *buf = tempargs->buf;
+ unsigned char *buf2 = tempargs->buf2;
+ int count;
+ for (count = 0; COND(c[D_IGE_128_AES][testnum]); count++)
+ AES_ige_encrypt(buf, buf2,
+ (size_t)lengths[testnum], &aes_ks1,
+ iv, AES_ENCRYPT);
+ return count;
+}
+
+static int AES_ige_192_encrypt_loop(void *args)
+{
+ loopargs_t *tempargs = *(loopargs_t **)args;
+ unsigned char *buf = tempargs->buf;
+ unsigned char *buf2 = tempargs->buf2;
+ int count;
+ for (count = 0; COND(c[D_IGE_192_AES][testnum]); count++)
+ AES_ige_encrypt(buf, buf2,
+ (size_t)lengths[testnum], &aes_ks2,
+ iv, AES_ENCRYPT);
+ return count;
+}
+
+static int AES_ige_256_encrypt_loop(void *args)
+{
+ loopargs_t *tempargs = *(loopargs_t **)args;
+ unsigned char *buf = tempargs->buf;
+ unsigned char *buf2 = tempargs->buf2;
+ int count;
+ for (count = 0; COND(c[D_IGE_256_AES][testnum]); count++)
+ AES_ige_encrypt(buf, buf2,
+ (size_t)lengths[testnum], &aes_ks3,
+ iv, AES_ENCRYPT);
+ return count;
+}
+
+static int CRYPTO_gcm128_aad_loop(void *args)
+{
+ loopargs_t *tempargs = *(loopargs_t **)args;
+ unsigned char *buf = tempargs->buf;
+ GCM128_CONTEXT *gcm_ctx = tempargs->gcm_ctx;
+ int count;
+ for (count = 0; COND(c[D_GHASH][testnum]); count++)
+ CRYPTO_gcm128_aad(gcm_ctx, buf, lengths[testnum]);
+ return count;
+}
+
+static long save_count = 0;
+static int decrypt = 0;
+static int EVP_Update_loop(void *args)
+{
+ loopargs_t *tempargs = *(loopargs_t **)args;
+ unsigned char *buf = tempargs->buf;
+ EVP_CIPHER_CTX *ctx = tempargs->ctx;
+ int outl, count;
+#ifndef SIGALRM
+ int nb_iter = save_count * 4 * lengths[0] / lengths[testnum];
+#endif
+ if (decrypt)
+ for (count = 0; COND(nb_iter); count++)
+ EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
+ else
+ for (count = 0; COND(nb_iter); count++)
+ EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
+ if (decrypt)
+ EVP_DecryptFinal_ex(ctx, buf, &outl);
+ else
+ EVP_EncryptFinal_ex(ctx, buf, &outl);
+ return count;
+}
+
+static const EVP_MD *evp_md = NULL;
+static int EVP_Digest_loop(void *args)
+{
+ loopargs_t *tempargs = *(loopargs_t **)args;
+ unsigned char *buf = tempargs->buf;
+ unsigned char md[EVP_MAX_MD_SIZE];
+ int count;
+#ifndef SIGALRM
+ int nb_iter = save_count * 4 * lengths[0] / lengths[testnum];
+#endif
+
+ for (count = 0; COND(nb_iter); count++) {
+ if (!EVP_Digest(buf, lengths[testnum], md, NULL, evp_md, NULL))
+ return -1;
+ }
+ return count;
+}
+
+#ifndef OPENSSL_NO_RSA
+static long rsa_c[RSA_NUM][2]; /* # RSA iteration test */
+
+static int RSA_sign_loop(void *args)
+{
+ loopargs_t *tempargs = *(loopargs_t **)args;
+ unsigned char *buf = tempargs->buf;
+ unsigned char *buf2 = tempargs->buf2;
+ unsigned int *rsa_num = &tempargs->siglen;
+ RSA **rsa_key = tempargs->rsa_key;
+ int ret, count;
+ for (count = 0; COND(rsa_c[testnum][0]); count++) {
+ ret = RSA_sign(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[testnum]);
+ if (ret == 0) {
+ BIO_printf(bio_err, "RSA sign failure\n");
+ ERR_print_errors(bio_err);
+ count = -1;
+ break;
+ }
+ }
+ return count;
+}
+
+static int RSA_verify_loop(void *args)
+{
+ loopargs_t *tempargs = *(loopargs_t **)args;
+ unsigned char *buf = tempargs->buf;
+ unsigned char *buf2 = tempargs->buf2;
+ unsigned int rsa_num = tempargs->siglen;
+ RSA **rsa_key = tempargs->rsa_key;
+ int ret, count;
+ for (count = 0; COND(rsa_c[testnum][1]); count++) {
+ ret = RSA_verify(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[testnum]);
+ if (ret <= 0) {
+ BIO_printf(bio_err, "RSA verify failure\n");
+ ERR_print_errors(bio_err);
+ count = -1;
+ break;
+ }
+ }
+ return count;
+}
+#endif
+
+#ifndef OPENSSL_NO_DSA
+static long dsa_c[DSA_NUM][2];
+static int DSA_sign_loop(void *args)
+{
+ loopargs_t *tempargs = *(loopargs_t **)args;
+ unsigned char *buf = tempargs->buf;
+ unsigned char *buf2 = tempargs->buf2;
+ DSA **dsa_key = tempargs->dsa_key;
+ unsigned int *siglen = &tempargs->siglen;
+ int ret, count;
+ for (count = 0; COND(dsa_c[testnum][0]); count++) {
+ ret = DSA_sign(0, buf, 20, buf2, siglen, dsa_key[testnum]);
+ if (ret == 0) {
+ BIO_printf(bio_err, "DSA sign failure\n");
+ ERR_print_errors(bio_err);
+ count = -1;
+ break;
+ }
+ }
+ return count;
+}
+
+static int DSA_verify_loop(void *args)
+{
+ loopargs_t *tempargs = *(loopargs_t **)args;
+ unsigned char *buf = tempargs->buf;
+ unsigned char *buf2 = tempargs->buf2;
+ DSA **dsa_key = tempargs->dsa_key;
+ unsigned int siglen = tempargs->siglen;
+ int ret, count;
+ for (count = 0; COND(dsa_c[testnum][1]); count++) {
+ ret = DSA_verify(0, buf, 20, buf2, siglen, dsa_key[testnum]);
+ if (ret <= 0) {
+ BIO_printf(bio_err, "DSA verify failure\n");
+ ERR_print_errors(bio_err);
+ count = -1;
+ break;
+ }
+ }
+ return count;
+}
+#endif
+
+#ifndef OPENSSL_NO_EC
+static long ecdsa_c[EC_NUM][2];
+static int ECDSA_sign_loop(void *args)
+{
+ loopargs_t *tempargs = *(loopargs_t **)args;
+ unsigned char *buf = tempargs->buf;
+ EC_KEY **ecdsa = tempargs->ecdsa;
+ unsigned char *ecdsasig = tempargs->buf2;
+ unsigned int *ecdsasiglen = &tempargs->siglen;
+ int ret, count;
+ for (count = 0; COND(ecdsa_c[testnum][0]); count++) {
+ ret = ECDSA_sign(0, buf, 20,
+ ecdsasig, ecdsasiglen, ecdsa[testnum]);
+ if (ret == 0) {
+ BIO_printf(bio_err, "ECDSA sign failure\n");
+ ERR_print_errors(bio_err);
+ count = -1;
+ break;
+ }
+ }
+ return count;
+}
+
+static int ECDSA_verify_loop(void *args)
+{
+ loopargs_t *tempargs = *(loopargs_t **)args;
+ unsigned char *buf = tempargs->buf;
+ EC_KEY **ecdsa = tempargs->ecdsa;
+ unsigned char *ecdsasig = tempargs->buf2;
+ unsigned int ecdsasiglen = tempargs->siglen;
+ int ret, count;
+ for (count = 0; COND(ecdsa_c[testnum][1]); count++) {
+ ret = ECDSA_verify(0, buf, 20, ecdsasig, ecdsasiglen,
+ ecdsa[testnum]);
+ if (ret != 1) {
+ BIO_printf(bio_err, "ECDSA verify failure\n");
+ ERR_print_errors(bio_err);
+ count = -1;
+ break;
+ }
+ }
+ return count;
+}
+
+/* ******************************************************************** */
+static long ecdh_c[EC_NUM][1];
+
+static int ECDH_compute_key_loop(void *args)
+{
+ loopargs_t *tempargs = *(loopargs_t **)args;
+ EC_KEY **ecdh_a = tempargs->ecdh_a;
+ EC_KEY **ecdh_b = tempargs->ecdh_b;
+ unsigned char *secret_a = tempargs->secret_a;
+ int count;
+ size_t outlen = tempargs->outlen;
+ kdf_fn kdf = tempargs->kdf;
+
+ for (count = 0; COND(ecdh_c[testnum][0]); count++) {
+ ECDH_compute_key(secret_a, outlen,
+ EC_KEY_get0_public_key(ecdh_b[testnum]),
+ ecdh_a[testnum], kdf);
+ }
+ return count;
+}
+
+static const size_t KDF1_SHA1_len = 20;
+static void *KDF1_SHA1(const void *in, size_t inlen, void *out,
+ size_t *outlen)
+{
+ if (*outlen < SHA_DIGEST_LENGTH)
+ return NULL;
+ *outlen = SHA_DIGEST_LENGTH;
+ return SHA1(in, inlen, out);
+}
+#endif /* OPENSSL_NO_EC */
+
+static int run_benchmark(int async_jobs,
+ int (*loop_function)(void *), loopargs_t *loopargs)
+{
+ int job_op_count = 0;
+ int total_op_count = 0;
+ int num_inprogress = 0;
+ int error = 0, i = 0, ret = 0;
+ OSSL_ASYNC_FD job_fd = 0;
+ size_t num_job_fds = 0;
+
+ run = 1;
+
+ if (async_jobs == 0) {
+ return loop_function((void *)&loopargs);
+ }
+
+ for (i = 0; i < async_jobs && !error; i++) {
+ loopargs_t *looparg_item = loopargs + i;
+
+ /* Copy pointer content (looparg_t item address) into async context */
+ ret = ASYNC_start_job(&loopargs[i].inprogress_job, loopargs[i].wait_ctx,
+ &job_op_count, loop_function,
+ (void *)&looparg_item, sizeof(looparg_item));
+ switch (ret) {
+ case ASYNC_PAUSE:
+ ++num_inprogress;
+ break;
+ case ASYNC_FINISH:
+ if (job_op_count == -1) {
+ error = 1;
+ } else {
+ total_op_count += job_op_count;
+ }
+ break;
+ case ASYNC_NO_JOBS:
+ case ASYNC_ERR:
+ BIO_printf(bio_err, "Failure in the job\n");
+ ERR_print_errors(bio_err);
+ error = 1;
+ break;
+ }
+ }
+
+ while (num_inprogress > 0) {
+#if defined(OPENSSL_SYS_WINDOWS)
+ DWORD avail = 0;
+#elif defined(OPENSSL_SYS_UNIX)
+ int select_result = 0;
+ OSSL_ASYNC_FD max_fd = 0;
+ fd_set waitfdset;
+
+ FD_ZERO(&waitfdset);
+
+ for (i = 0; i < async_jobs && num_inprogress > 0; i++) {
+ if (loopargs[i].inprogress_job == NULL)
+ continue;
+
+ if (!ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, NULL, &num_job_fds)
+ || num_job_fds > 1) {
+ BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n");
+ ERR_print_errors(bio_err);
+ error = 1;
+ break;
+ }
+ ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd, &num_job_fds);
+ FD_SET(job_fd, &waitfdset);
+ if (job_fd > max_fd)
+ max_fd = job_fd;
+ }
+
+ if (max_fd >= (OSSL_ASYNC_FD)FD_SETSIZE) {
+ BIO_printf(bio_err,
+ "Error: max_fd (%d) must be smaller than FD_SETSIZE (%d). "
+ "Decrease the value of async_jobs\n",
+ max_fd, FD_SETSIZE);
+ ERR_print_errors(bio_err);
+ error = 1;
+ break;
+ }
+
+ select_result = select(max_fd + 1, &waitfdset, NULL, NULL, NULL);
+ if (select_result == -1 && errno == EINTR)
+ continue;
+
+ if (select_result == -1) {
+ BIO_printf(bio_err, "Failure in the select\n");
+ ERR_print_errors(bio_err);
+ error = 1;
+ break;
+ }
+
+ if (select_result == 0)
+ continue;
+#endif
+
+ for (i = 0; i < async_jobs; i++) {
+ if (loopargs[i].inprogress_job == NULL)
+ continue;
+
+ if (!ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, NULL, &num_job_fds)
+ || num_job_fds > 1) {
+ BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n");
+ ERR_print_errors(bio_err);
+ error = 1;
+ break;
+ }
+ ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd, &num_job_fds);
+
+#if defined(OPENSSL_SYS_UNIX)
+ if (num_job_fds == 1 && !FD_ISSET(job_fd, &waitfdset))
+ continue;
+#elif defined(OPENSSL_SYS_WINDOWS)
+ if (num_job_fds == 1
+ && !PeekNamedPipe(job_fd, NULL, 0, NULL, &avail, NULL)
+ && avail > 0)
+ continue;
+#endif
+
+ ret = ASYNC_start_job(&loopargs[i].inprogress_job,
+ loopargs[i].wait_ctx, &job_op_count, loop_function,
+ (void *)(loopargs + i), sizeof(loopargs_t));
+ switch (ret) {
+ case ASYNC_PAUSE:
+ break;
+ case ASYNC_FINISH:
+ if (job_op_count == -1) {
+ error = 1;
+ } else {
+ total_op_count += job_op_count;
+ }
+ --num_inprogress;
+ loopargs[i].inprogress_job = NULL;
+ break;
+ case ASYNC_NO_JOBS:
+ case ASYNC_ERR:
+ --num_inprogress;
+ loopargs[i].inprogress_job = NULL;
+ BIO_printf(bio_err, "Failure in the job\n");
+ ERR_print_errors(bio_err);
+ error = 1;
+ break;
+ }
+ }
+ }
+
+ return error ? -1 : total_op_count;
+}
+
+int speed_main(int argc, char **argv)
+{
+ ENGINE *e = NULL;
+ loopargs_t *loopargs = NULL;
+ int async_init = 0;
+ int loopargs_len = 0;
+ char *prog;
+ const char *engine_id = NULL;
+ const EVP_CIPHER *evp_cipher = NULL;
+ double d = 0.0;
+ OPTION_CHOICE o;
+ int multiblock = 0, pr_header = 0;
+ int doit[ALGOR_NUM] = { 0 };
+ int ret = 1, i, k, misalign = 0;
+ long count = 0;
+#ifndef NO_FORK
+ int multi = 0;
+#endif
+ unsigned int async_jobs = 0;
+#if !defined(OPENSSL_NO_RSA) || !defined(OPENSSL_NO_DSA) \
+ || !defined(OPENSSL_NO_EC)
+ long rsa_count = 1;
+#endif
+ size_t loop;
+
+ /* What follows are the buffers and key material. */
+#ifndef OPENSSL_NO_RC5
+ RC5_32_KEY rc5_ks;
+#endif
+#ifndef OPENSSL_NO_RC2
+ RC2_KEY rc2_ks;
+#endif
+#ifndef OPENSSL_NO_IDEA
+ IDEA_KEY_SCHEDULE idea_ks;
+#endif
+#ifndef OPENSSL_NO_SEED
+ SEED_KEY_SCHEDULE seed_ks;
+#endif
+#ifndef OPENSSL_NO_BF
+ BF_KEY bf_ks;
+#endif
+#ifndef OPENSSL_NO_CAST
+ CAST_KEY cast_ks;
+#endif
+ static const unsigned char key16[16] = {
+ 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
+ 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12
+ };
+ static const unsigned char key24[24] = {
+ 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
+ 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
+ 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34
+ };
+ static const unsigned char key32[32] = {
+ 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
+ 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
+ 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34,
+ 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56
+ };
+#ifndef OPENSSL_NO_CAMELLIA
+ static const unsigned char ckey24[24] = {
+ 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
+ 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
+ 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34
+ };
+ static const unsigned char ckey32[32] = {
+ 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
+ 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
+ 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34,
+ 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56
+ };
+ CAMELLIA_KEY camellia_ks1, camellia_ks2, camellia_ks3;
+#endif
+#ifndef OPENSSL_NO_DES
+ static DES_cblock key = {
+ 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0
+ };
+ static DES_cblock key2 = {
+ 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12
+ };
+ static DES_cblock key3 = {
+ 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34
+ };
+#endif
+#ifndef OPENSSL_NO_RSA
+ static const unsigned int rsa_bits[RSA_NUM] = {
+ 512, 1024, 2048, 3072, 4096, 7680, 15360
+ };
+ static const unsigned char *rsa_data[RSA_NUM] = {
+ test512, test1024, test2048, test3072, test4096, test7680, test15360
+ };
+ static const int rsa_data_length[RSA_NUM] = {
+ sizeof(test512), sizeof(test1024),
+ sizeof(test2048), sizeof(test3072),
+ sizeof(test4096), sizeof(test7680),
+ sizeof(test15360)
+ };
+ int rsa_doit[RSA_NUM] = { 0 };
+#endif
+#ifndef OPENSSL_NO_DSA
+ static const unsigned int dsa_bits[DSA_NUM] = { 512, 1024, 2048 };
+ int dsa_doit[DSA_NUM] = { 0 };
+#endif
+#ifndef OPENSSL_NO_EC
+ /*
+ * We only test over the following curves as they are representative, To
+ * add tests over more curves, simply add the curve NID and curve name to
+ * the following arrays and increase the EC_NUM value accordingly.
+ */
+ static const unsigned int test_curves[EC_NUM] = {
+ /* Prime Curves */
+ NID_secp160r1, NID_X9_62_prime192v1, NID_secp224r1,
+ NID_X9_62_prime256v1, NID_secp384r1, NID_secp521r1,
+ /* Binary Curves */
+ NID_sect163k1, NID_sect233k1, NID_sect283k1,
+ NID_sect409k1, NID_sect571k1, NID_sect163r2,
+ NID_sect233r1, NID_sect283r1, NID_sect409r1,
+ NID_sect571r1,
+ /* Other */
+ NID_X25519
+ };
+ static const char *test_curves_names[EC_NUM] = {
+ /* Prime Curves */
+ "secp160r1", "nistp192", "nistp224",
+ "nistp256", "nistp384", "nistp521",
+ /* Binary Curves */
+ "nistk163", "nistk233", "nistk283",
+ "nistk409", "nistk571", "nistb163",
+ "nistb233", "nistb283", "nistb409",
+ "nistb571",
+ /* Other */
+ "X25519"
+ };
+ static const int test_curves_bits[EC_NUM] = {
+ 160, 192, 224,
+ 256, 384, 521,
+ 163, 233, 283,
+ 409, 571, 163,
+ 233, 283, 409,
+ 571, 253 /* X25519 */
+ };
+
+ int ecdsa_doit[EC_NUM] = { 0 };
+ int ecdh_doit[EC_NUM] = { 0 };
+#endif /* ndef OPENSSL_NO_EC */
+
+ prog = opt_init(argc, argv, speed_options);
+ while ((o = opt_next()) != OPT_EOF) {
+ switch (o) {
+ case OPT_EOF:
+ case OPT_ERR:
+ opterr:
+ BIO_printf(bio_err, "%s: Use -help for summary.\n", prog);
+ goto end;
+ case OPT_HELP:
+ opt_help(speed_options);
+ ret = 0;
+ goto end;
+ case OPT_ELAPSED:
+ usertime = 0;
+ break;
+ case OPT_EVP:
+ evp_md = NULL;
+ evp_cipher = EVP_get_cipherbyname(opt_arg());
+ if (evp_cipher == NULL)
+ evp_md = EVP_get_digestbyname(opt_arg());
+ if (evp_cipher == NULL && evp_md == NULL) {
+ BIO_printf(bio_err,
+ "%s: %s is an unknown cipher or digest\n",
+ prog, opt_arg());
+ goto end;
+ }
+ doit[D_EVP] = 1;
+ break;
+ case OPT_DECRYPT:
+ decrypt = 1;
+ break;
+ case OPT_ENGINE:
+ /*
+ * In a forked execution, an engine might need to be
+ * initialised by each child process, not by the parent.
+ * So store the name here and run setup_engine() later on.
+ */
+ engine_id = opt_arg();
+ break;
+ case OPT_MULTI:
+#ifndef NO_FORK
+ multi = atoi(opt_arg());
+#endif
+ break;
+ case OPT_ASYNCJOBS:
+#ifndef OPENSSL_NO_ASYNC
+ async_jobs = atoi(opt_arg());
+ if (!ASYNC_is_capable()) {
+ BIO_printf(bio_err,
+ "%s: async_jobs specified but async not supported\n",
+ prog);
+ goto opterr;
+ }
+ if (async_jobs > 99999) {
+ BIO_printf(bio_err,
+ "%s: too many async_jobs\n",
+ prog);
+ goto opterr;
+ }
+#endif
+ break;
+ case OPT_MISALIGN:
+ if (!opt_int(opt_arg(), &misalign))
+ goto end;
+ if (misalign > MISALIGN) {
+ BIO_printf(bio_err,
+ "%s: Maximum offset is %d\n", prog, MISALIGN);
+ goto opterr;
+ }
+ break;
+ case OPT_MR:
+ mr = 1;
+ break;
+ case OPT_MB:
+ multiblock = 1;
+#ifdef OPENSSL_NO_MULTIBLOCK
+ BIO_printf(bio_err,
+ "%s: -mb specified but multi-block support is disabled\n",
+ prog);
+ goto end;
+#endif
+ break;
+ }
+ }
+ argc = opt_num_rest();
+ argv = opt_rest();
+
+ /* Remaining arguments are algorithms. */
+ for ( ; *argv; argv++) {
+ if (found(*argv, doit_choices, &i)) {
+ doit[i] = 1;
+ continue;
+ }
+#ifndef OPENSSL_NO_DES
+ if (strcmp(*argv, "des") == 0) {
+ doit[D_CBC_DES] = doit[D_EDE3_DES] = 1;
+ continue;
+ }
+#endif
+ if (strcmp(*argv, "sha") == 0) {
+ doit[D_SHA1] = doit[D_SHA256] = doit[D_SHA512] = 1;
+ continue;
+ }
+#ifndef OPENSSL_NO_RSA
+ if (strcmp(*argv, "openssl") == 0)
+ continue;
+ if (strcmp(*argv, "rsa") == 0) {
+ rsa_doit[R_RSA_512] = rsa_doit[R_RSA_1024] =
+ rsa_doit[R_RSA_2048] = rsa_doit[R_RSA_3072] =
+ rsa_doit[R_RSA_4096] = rsa_doit[R_RSA_7680] =
+ rsa_doit[R_RSA_15360] = 1;
+ continue;
+ }
+ if (found(*argv, rsa_choices, &i)) {
+ rsa_doit[i] = 1;
+ continue;
+ }
+#endif
+#ifndef OPENSSL_NO_DSA
+ if (strcmp(*argv, "dsa") == 0) {
+ dsa_doit[R_DSA_512] = dsa_doit[R_DSA_1024] =
+ dsa_doit[R_DSA_2048] = 1;
+ continue;
+ }
+ if (found(*argv, dsa_choices, &i)) {
+ dsa_doit[i] = 2;
+ continue;
+ }
+#endif
+ if (strcmp(*argv, "aes") == 0) {
+ doit[D_CBC_128_AES] = doit[D_CBC_192_AES] =
+ doit[D_CBC_256_AES] = 1;
+ continue;
+ }
+#ifndef OPENSSL_NO_CAMELLIA
+ if (strcmp(*argv, "camellia") == 0) {
+ doit[D_CBC_128_CML] = doit[D_CBC_192_CML] =
+ doit[D_CBC_256_CML] = 1;
+ continue;
+ }
+#endif
+#ifndef OPENSSL_NO_EC
+ if (strcmp(*argv, "ecdsa") == 0) {
+ for (loop = 0; loop < OSSL_NELEM(ecdsa_choices); loop++)
+ ecdsa_doit[ecdsa_choices[loop].retval] = 1;
+ continue;
+ }
+ if (found(*argv, ecdsa_choices, &i)) {
+ ecdsa_doit[i] = 2;
+ continue;
+ }
+ if (strcmp(*argv, "ecdh") == 0) {
+ for (loop = 0; loop < OSSL_NELEM(ecdh_choices); loop++)
+ ecdh_doit[ecdh_choices[loop].retval] = 1;
+ continue;
+ }
+ if (found(*argv, ecdh_choices, &i)) {
+ ecdh_doit[i] = 2;
+ continue;
+ }
+#endif
+ BIO_printf(bio_err, "%s: Unknown algorithm %s\n", prog, *argv);
+ goto end;
+ }
+
+ /* Initialize the job pool if async mode is enabled */
+ if (async_jobs > 0) {
+ async_init = ASYNC_init_thread(async_jobs, async_jobs);
+ if (!async_init) {
+ BIO_printf(bio_err, "Error creating the ASYNC job pool\n");
+ goto end;
+ }
+ }
+
+ loopargs_len = (async_jobs == 0 ? 1 : async_jobs);
+ loopargs = app_malloc(loopargs_len * sizeof(loopargs_t), "array of loopargs");
+ memset(loopargs, 0, loopargs_len * sizeof(loopargs_t));
+
+ for (i = 0; i < loopargs_len; i++) {
+ if (async_jobs > 0) {
+ loopargs[i].wait_ctx = ASYNC_WAIT_CTX_new();
+ if (loopargs[i].wait_ctx == NULL) {
+ BIO_printf(bio_err, "Error creating the ASYNC_WAIT_CTX\n");
+ goto end;
+ }
+ }
+
+ loopargs[i].buf_malloc = app_malloc((int)BUFSIZE + MAX_MISALIGNMENT + 1, "input buffer");
+ loopargs[i].buf2_malloc = app_malloc((int)BUFSIZE + MAX_MISALIGNMENT + 1, "input buffer");
+ /* Align the start of buffers on a 64 byte boundary */
+ loopargs[i].buf = loopargs[i].buf_malloc + misalign;
+ loopargs[i].buf2 = loopargs[i].buf2_malloc + misalign;
+#ifndef OPENSSL_NO_EC
+ loopargs[i].secret_a = app_malloc(MAX_ECDH_SIZE, "ECDH secret a");
+ loopargs[i].secret_b = app_malloc(MAX_ECDH_SIZE, "ECDH secret b");
+#endif
+ }
+
+#ifndef NO_FORK
+ if (multi && do_multi(multi))
+ goto show_res;
+#endif
+
+ /* Initialize the engine after the fork */
+ e = setup_engine(engine_id, 0);
+
+ /* No parameters; turn on everything. */
+ if ((argc == 0) && !doit[D_EVP]) {
+ for (i = 0; i < ALGOR_NUM; i++)
+ if (i != D_EVP)
+ doit[i] = 1;
+#ifndef OPENSSL_NO_RSA
+ for (i = 0; i < RSA_NUM; i++)
+ rsa_doit[i] = 1;
+#endif
+#ifndef OPENSSL_NO_DSA
+ for (i = 0; i < DSA_NUM; i++)
+ dsa_doit[i] = 1;
+#endif
+#ifndef OPENSSL_NO_EC
+ for (loop = 0; loop < OSSL_NELEM(ecdsa_choices); loop++)
+ ecdsa_doit[ecdsa_choices[loop].retval] = 1;
+ for (loop = 0; loop < OSSL_NELEM(ecdh_choices); loop++)
+ ecdh_doit[ecdh_choices[loop].retval] = 1;
+#endif
+ }
+ for (i = 0; i < ALGOR_NUM; i++)
+ if (doit[i])
+ pr_header++;
+
+ if (usertime == 0 && !mr)
+ BIO_printf(bio_err,
+ "You have chosen to measure elapsed time "
+ "instead of user CPU time.\n");
+
+#ifndef OPENSSL_NO_RSA
+ for (i = 0; i < loopargs_len; i++) {
+ for (k = 0; k < RSA_NUM; k++) {
+ const unsigned char *p;
+
+ p = rsa_data[k];
+ loopargs[i].rsa_key[k] = d2i_RSAPrivateKey(NULL, &p, rsa_data_length[k]);
+ if (loopargs[i].rsa_key[k] == NULL) {
+ BIO_printf(bio_err, "internal error loading RSA key number %d\n",
+ k);
+ goto end;
+ }
+ }
+ }
+#endif
+#ifndef OPENSSL_NO_DSA
+ for (i = 0; i < loopargs_len; i++) {
+ loopargs[i].dsa_key[0] = get_dsa512();
+ loopargs[i].dsa_key[1] = get_dsa1024();
+ loopargs[i].dsa_key[2] = get_dsa2048();
+ }
+#endif
+#ifndef OPENSSL_NO_DES
+ DES_set_key_unchecked(&key, &sch);
+ DES_set_key_unchecked(&key2, &sch2);
+ DES_set_key_unchecked(&key3, &sch3);
+#endif
+ AES_set_encrypt_key(key16, 128, &aes_ks1);
+ AES_set_encrypt_key(key24, 192, &aes_ks2);
+ AES_set_encrypt_key(key32, 256, &aes_ks3);
+#ifndef OPENSSL_NO_CAMELLIA
+ Camellia_set_key(key16, 128, &camellia_ks1);
+ Camellia_set_key(ckey24, 192, &camellia_ks2);
+ Camellia_set_key(ckey32, 256, &camellia_ks3);
+#endif
+#ifndef OPENSSL_NO_IDEA
+ IDEA_set_encrypt_key(key16, &idea_ks);
+#endif
+#ifndef OPENSSL_NO_SEED
+ SEED_set_key(key16, &seed_ks);
+#endif
+#ifndef OPENSSL_NO_RC4
+ RC4_set_key(&rc4_ks, 16, key16);
+#endif
+#ifndef OPENSSL_NO_RC2
+ RC2_set_key(&rc2_ks, 16, key16, 128);
+#endif
+#ifndef OPENSSL_NO_RC5
+ RC5_32_set_key(&rc5_ks, 16, key16, 12);
+#endif
+#ifndef OPENSSL_NO_BF
+ BF_set_key(&bf_ks, 16, key16);
+#endif
+#ifndef OPENSSL_NO_CAST
+ CAST_set_key(&cast_ks, 16, key16);
+#endif
+#ifndef SIGALRM
+# ifndef OPENSSL_NO_DES
+ BIO_printf(bio_err, "First we calculate the approximate speed ...\n");
+ count = 10;
+ do {
+ long it;
+ count *= 2;
+ Time_F(START);
+ for (it = count; it; it--)
+ DES_ecb_encrypt((DES_cblock *)loopargs[0].buf,
+ (DES_cblock *)loopargs[0].buf, &sch, DES_ENCRYPT);
+ d = Time_F(STOP);
+ } while (d < 3);
+ save_count = count;
+ c[D_MD2][0] = count / 10;
+ c[D_MDC2][0] = count / 10;
+ c[D_MD4][0] = count;
+ c[D_MD5][0] = count;
+ c[D_HMAC][0] = count;
+ c[D_SHA1][0] = count;
+ c[D_RMD160][0] = count;
+ c[D_RC4][0] = count * 5;
+ c[D_CBC_DES][0] = count;
+ c[D_EDE3_DES][0] = count / 3;
+ c[D_CBC_IDEA][0] = count;
+ c[D_CBC_SEED][0] = count;
+ c[D_CBC_RC2][0] = count;
+ c[D_CBC_RC5][0] = count;
+ c[D_CBC_BF][0] = count;
+ c[D_CBC_CAST][0] = count;
+ c[D_CBC_128_AES][0] = count;
+ c[D_CBC_192_AES][0] = count;
+ c[D_CBC_256_AES][0] = count;
+ c[D_CBC_128_CML][0] = count;
+ c[D_CBC_192_CML][0] = count;
+ c[D_CBC_256_CML][0] = count;
+ c[D_SHA256][0] = count;
+ c[D_SHA512][0] = count;
+ c[D_WHIRLPOOL][0] = count;
+ c[D_IGE_128_AES][0] = count;
+ c[D_IGE_192_AES][0] = count;
+ c[D_IGE_256_AES][0] = count;
+ c[D_GHASH][0] = count;
+
+ for (i = 1; i < SIZE_NUM; i++) {
+ long l0, l1;
+
+ l0 = (long)lengths[0];
+ l1 = (long)lengths[i];
+
+ c[D_MD2][i] = c[D_MD2][0] * 4 * l0 / l1;
+ c[D_MDC2][i] = c[D_MDC2][0] * 4 * l0 / l1;
+ c[D_MD4][i] = c[D_MD4][0] * 4 * l0 / l1;
+ c[D_MD5][i] = c[D_MD5][0] * 4 * l0 / l1;
+ c[D_HMAC][i] = c[D_HMAC][0] * 4 * l0 / l1;
+ c[D_SHA1][i] = c[D_SHA1][0] * 4 * l0 / l1;
+ c[D_RMD160][i] = c[D_RMD160][0] * 4 * l0 / l1;
+ c[D_SHA256][i] = c[D_SHA256][0] * 4 * l0 / l1;
+ c[D_SHA512][i] = c[D_SHA512][0] * 4 * l0 / l1;
+ c[D_WHIRLPOOL][i] = c[D_WHIRLPOOL][0] * 4 * l0 / l1;
+ c[D_GHASH][i] = c[D_GHASH][0] * 4 * l0 / l1;
+
+ l0 = (long)lengths[i - 1];
+
+ c[D_RC4][i] = c[D_RC4][i - 1] * l0 / l1;
+ c[D_CBC_DES][i] = c[D_CBC_DES][i - 1] * l0 / l1;
+ c[D_EDE3_DES][i] = c[D_EDE3_DES][i - 1] * l0 / l1;
+ c[D_CBC_IDEA][i] = c[D_CBC_IDEA][i - 1] * l0 / l1;
+ c[D_CBC_SEED][i] = c[D_CBC_SEED][i - 1] * l0 / l1;
+ c[D_CBC_RC2][i] = c[D_CBC_RC2][i - 1] * l0 / l1;
+ c[D_CBC_RC5][i] = c[D_CBC_RC5][i - 1] * l0 / l1;
+ c[D_CBC_BF][i] = c[D_CBC_BF][i - 1] * l0 / l1;
+ c[D_CBC_CAST][i] = c[D_CBC_CAST][i - 1] * l0 / l1;
+ c[D_CBC_128_AES][i] = c[D_CBC_128_AES][i - 1] * l0 / l1;
+ c[D_CBC_192_AES][i] = c[D_CBC_192_AES][i - 1] * l0 / l1;
+ c[D_CBC_256_AES][i] = c[D_CBC_256_AES][i - 1] * l0 / l1;
+ c[D_CBC_128_CML][i] = c[D_CBC_128_CML][i - 1] * l0 / l1;
+ c[D_CBC_192_CML][i] = c[D_CBC_192_CML][i - 1] * l0 / l1;
+ c[D_CBC_256_CML][i] = c[D_CBC_256_CML][i - 1] * l0 / l1;
+ c[D_IGE_128_AES][i] = c[D_IGE_128_AES][i - 1] * l0 / l1;
+ c[D_IGE_192_AES][i] = c[D_IGE_192_AES][i - 1] * l0 / l1;
+ c[D_IGE_256_AES][i] = c[D_IGE_256_AES][i - 1] * l0 / l1;
+ }
+
+# ifndef OPENSSL_NO_RSA
+ rsa_c[R_RSA_512][0] = count / 2000;
+ rsa_c[R_RSA_512][1] = count / 400;
+ for (i = 1; i < RSA_NUM; i++) {
+ rsa_c[i][0] = rsa_c[i - 1][0] / 8;
+ rsa_c[i][1] = rsa_c[i - 1][1] / 4;
+ if (rsa_doit[i] <= 1 && rsa_c[i][0] == 0)
+ rsa_doit[i] = 0;
+ else {
+ if (rsa_c[i][0] == 0) {
+ rsa_c[i][0] = 1; /* Set minimum iteration Nb to 1. */
+ rsa_c[i][1] = 20;
+ }
+ }
+ }
+# endif
+
+# ifndef OPENSSL_NO_DSA
+ dsa_c[R_DSA_512][0] = count / 1000;
+ dsa_c[R_DSA_512][1] = count / 1000 / 2;
+ for (i = 1; i < DSA_NUM; i++) {
+ dsa_c[i][0] = dsa_c[i - 1][0] / 4;
+ dsa_c[i][1] = dsa_c[i - 1][1] / 4;
+ if (dsa_doit[i] <= 1 && dsa_c[i][0] == 0)
+ dsa_doit[i] = 0;
+ else {
+ if (dsa_c[i][0] == 0) {
+ dsa_c[i][0] = 1; /* Set minimum iteration Nb to 1. */
+ dsa_c[i][1] = 1;
+ }
+ }
+ }
+# endif
+
+# ifndef OPENSSL_NO_EC
+ ecdsa_c[R_EC_P160][0] = count / 1000;
+ ecdsa_c[R_EC_P160][1] = count / 1000 / 2;
+ for (i = R_EC_P192; i <= R_EC_P521; i++) {
+ ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2;
+ ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2;
+ if (ecdsa_doit[i] <= 1 && ecdsa_c[i][0] == 0)
+ ecdsa_doit[i] = 0;
+ else {
+ if (ecdsa_c[i][0] == 0) {
+ ecdsa_c[i][0] = 1;
+ ecdsa_c[i][1] = 1;
+ }
+ }
+ }
+ ecdsa_c[R_EC_K163][0] = count / 1000;
+ ecdsa_c[R_EC_K163][1] = count / 1000 / 2;
+ for (i = R_EC_K233; i <= R_EC_K571; i++) {
+ ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2;
+ ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2;
+ if (ecdsa_doit[i] <= 1 && ecdsa_c[i][0] == 0)
+ ecdsa_doit[i] = 0;
+ else {
+ if (ecdsa_c[i][0] == 0) {
+ ecdsa_c[i][0] = 1;
+ ecdsa_c[i][1] = 1;
+ }
+ }
+ }
+ ecdsa_c[R_EC_B163][0] = count / 1000;
+ ecdsa_c[R_EC_B163][1] = count / 1000 / 2;
+ for (i = R_EC_B233; i <= R_EC_B571; i++) {
+ ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2;
+ ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2;
+ if (ecdsa_doit[i] <= 1 && ecdsa_c[i][0] == 0)
+ ecdsa_doit[i] = 0;
+ else {
+ if (ecdsa_c[i][0] == 0) {
+ ecdsa_c[i][0] = 1;
+ ecdsa_c[i][1] = 1;
+ }
+ }
+ }
+
+ ecdh_c[R_EC_P160][0] = count / 1000;
+ for (i = R_EC_P192; i <= R_EC_P521; i++) {
+ ecdh_c[i][0] = ecdh_c[i - 1][0] / 2;
+ if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0)
+ ecdh_doit[i] = 0;
+ else {
+ if (ecdh_c[i][0] == 0) {
+ ecdh_c[i][0] = 1;
+ }
+ }
+ }
+ ecdh_c[R_EC_K163][0] = count / 1000;
+ for (i = R_EC_K233; i <= R_EC_K571; i++) {
+ ecdh_c[i][0] = ecdh_c[i - 1][0] / 2;
+ if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0)
+ ecdh_doit[i] = 0;
+ else {
+ if (ecdh_c[i][0] == 0) {
+ ecdh_c[i][0] = 1;
+ }
+ }
+ }
+ ecdh_c[R_EC_B163][0] = count / 1000;
+ for (i = R_EC_B233; i <= R_EC_B571; i++) {
+ ecdh_c[i][0] = ecdh_c[i - 1][0] / 2;
+ if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0)
+ ecdh_doit[i] = 0;
+ else {
+ if (ecdh_c[i][0] == 0) {
+ ecdh_c[i][0] = 1;
+ }
+ }
+ }
+# endif
+
+# else
+/* not worth fixing */
+# error "You cannot disable DES on systems without SIGALRM."
+# endif /* OPENSSL_NO_DES */
+#else
+# ifndef _WIN32
+ signal(SIGALRM, sig_done);
+# endif
+#endif /* SIGALRM */
+
+#ifndef OPENSSL_NO_MD2
+ if (doit[D_MD2]) {
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_MD2], c[D_MD2][testnum], lengths[testnum]);
+ Time_F(START);
+ count = run_benchmark(async_jobs, EVP_Digest_MD2_loop, loopargs);
+ d = Time_F(STOP);
+ print_result(D_MD2, testnum, count, d);
+ }
+ }
+#endif
+#ifndef OPENSSL_NO_MDC2
+ if (doit[D_MDC2]) {
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_MDC2], c[D_MDC2][testnum], lengths[testnum]);
+ Time_F(START);
+ count = run_benchmark(async_jobs, EVP_Digest_MDC2_loop, loopargs);
+ d = Time_F(STOP);
+ print_result(D_MDC2, testnum, count, d);
+ }
+ }
+#endif
+
+#ifndef OPENSSL_NO_MD4
+ if (doit[D_MD4]) {
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_MD4], c[D_MD4][testnum], lengths[testnum]);
+ Time_F(START);
+ count = run_benchmark(async_jobs, EVP_Digest_MD4_loop, loopargs);
+ d = Time_F(STOP);
+ print_result(D_MD4, testnum, count, d);
+ }
+ }
+#endif
+
+#ifndef OPENSSL_NO_MD5
+ if (doit[D_MD5]) {
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_MD5], c[D_MD5][testnum], lengths[testnum]);
+ Time_F(START);
+ count = run_benchmark(async_jobs, MD5_loop, loopargs);
+ d = Time_F(STOP);
+ print_result(D_MD5, testnum, count, d);
+ }
+ }
+
+ if (doit[D_HMAC]) {
+ static const char hmac_key[] = "This is a key...";
+ int len = strlen(hmac_key);
+
+ for (i = 0; i < loopargs_len; i++) {
+ loopargs[i].hctx = HMAC_CTX_new();
+ if (loopargs[i].hctx == NULL) {
+ BIO_printf(bio_err, "HMAC malloc failure, exiting...");
+ exit(1);
+ }
+
+ HMAC_Init_ex(loopargs[i].hctx, hmac_key, len, EVP_md5(), NULL);
+ }
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_HMAC], c[D_HMAC][testnum], lengths[testnum]);
+ Time_F(START);
+ count = run_benchmark(async_jobs, HMAC_loop, loopargs);
+ d = Time_F(STOP);
+ print_result(D_HMAC, testnum, count, d);
+ }
+ for (i = 0; i < loopargs_len; i++) {
+ HMAC_CTX_free(loopargs[i].hctx);
+ }
+ }
+#endif
+ if (doit[D_SHA1]) {
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_SHA1], c[D_SHA1][testnum], lengths[testnum]);
+ Time_F(START);
+ count = run_benchmark(async_jobs, SHA1_loop, loopargs);
+ d = Time_F(STOP);
+ print_result(D_SHA1, testnum, count, d);
+ }
+ }
+ if (doit[D_SHA256]) {
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_SHA256], c[D_SHA256][testnum], lengths[testnum]);
+ Time_F(START);
+ count = run_benchmark(async_jobs, SHA256_loop, loopargs);
+ d = Time_F(STOP);
+ print_result(D_SHA256, testnum, count, d);
+ }
+ }
+ if (doit[D_SHA512]) {
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_SHA512], c[D_SHA512][testnum], lengths[testnum]);
+ Time_F(START);
+ count = run_benchmark(async_jobs, SHA512_loop, loopargs);
+ d = Time_F(STOP);
+ print_result(D_SHA512, testnum, count, d);
+ }
+ }
+
+#ifndef OPENSSL_NO_WHIRLPOOL
+ if (doit[D_WHIRLPOOL]) {
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_WHIRLPOOL], c[D_WHIRLPOOL][testnum], lengths[testnum]);
+ Time_F(START);
+ count = run_benchmark(async_jobs, WHIRLPOOL_loop, loopargs);
+ d = Time_F(STOP);
+ print_result(D_WHIRLPOOL, testnum, count, d);
+ }
+ }
+#endif
+
+#ifndef OPENSSL_NO_RMD160
+ if (doit[D_RMD160]) {
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_RMD160], c[D_RMD160][testnum], lengths[testnum]);
+ Time_F(START);
+ count = run_benchmark(async_jobs, EVP_Digest_RMD160_loop, loopargs);
+ d = Time_F(STOP);
+ print_result(D_RMD160, testnum, count, d);
+ }
+ }
+#endif
+#ifndef OPENSSL_NO_RC4
+ if (doit[D_RC4]) {
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_RC4], c[D_RC4][testnum], lengths[testnum]);
+ Time_F(START);
+ count = run_benchmark(async_jobs, RC4_loop, loopargs);
+ d = Time_F(STOP);
+ print_result(D_RC4, testnum, count, d);
+ }
+ }
+#endif
+#ifndef OPENSSL_NO_DES
+ if (doit[D_CBC_DES]) {
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_CBC_DES], c[D_CBC_DES][testnum], lengths[testnum]);
+ Time_F(START);
+ count = run_benchmark(async_jobs, DES_ncbc_encrypt_loop, loopargs);
+ d = Time_F(STOP);
+ print_result(D_CBC_DES, testnum, count, d);
+ }
+ }
+
+ if (doit[D_EDE3_DES]) {
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_EDE3_DES], c[D_EDE3_DES][testnum], lengths[testnum]);
+ Time_F(START);
+ count = run_benchmark(async_jobs, DES_ede3_cbc_encrypt_loop, loopargs);
+ d = Time_F(STOP);
+ print_result(D_EDE3_DES, testnum, count, d);
+ }
+ }
+#endif
+
+ if (doit[D_CBC_128_AES]) {
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_CBC_128_AES], c[D_CBC_128_AES][testnum],
+ lengths[testnum]);
+ Time_F(START);
+ count = run_benchmark(async_jobs, AES_cbc_128_encrypt_loop, loopargs);
+ d = Time_F(STOP);
+ print_result(D_CBC_128_AES, testnum, count, d);
+ }
+ }
+ if (doit[D_CBC_192_AES]) {
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_CBC_192_AES], c[D_CBC_192_AES][testnum],
+ lengths[testnum]);
+ Time_F(START);
+ count = run_benchmark(async_jobs, AES_cbc_192_encrypt_loop, loopargs);
+ d = Time_F(STOP);
+ print_result(D_CBC_192_AES, testnum, count, d);
+ }
+ }
+ if (doit[D_CBC_256_AES]) {
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_CBC_256_AES], c[D_CBC_256_AES][testnum],
+ lengths[testnum]);
+ Time_F(START);
+ count = run_benchmark(async_jobs, AES_cbc_256_encrypt_loop, loopargs);
+ d = Time_F(STOP);
+ print_result(D_CBC_256_AES, testnum, count, d);
+ }
+ }
+
+ if (doit[D_IGE_128_AES]) {
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_IGE_128_AES], c[D_IGE_128_AES][testnum],
+ lengths[testnum]);
+ Time_F(START);
+ count = run_benchmark(async_jobs, AES_ige_128_encrypt_loop, loopargs);
+ d = Time_F(STOP);
+ print_result(D_IGE_128_AES, testnum, count, d);
+ }
+ }
+ if (doit[D_IGE_192_AES]) {
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_IGE_192_AES], c[D_IGE_192_AES][testnum],
+ lengths[testnum]);
+ Time_F(START);
+ count = run_benchmark(async_jobs, AES_ige_192_encrypt_loop, loopargs);
+ d = Time_F(STOP);
+ print_result(D_IGE_192_AES, testnum, count, d);
+ }
+ }
+ if (doit[D_IGE_256_AES]) {
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_IGE_256_AES], c[D_IGE_256_AES][testnum],
+ lengths[testnum]);
+ Time_F(START);
+ count = run_benchmark(async_jobs, AES_ige_256_encrypt_loop, loopargs);
+ d = Time_F(STOP);
+ print_result(D_IGE_256_AES, testnum, count, d);
+ }
+ }
+ if (doit[D_GHASH]) {
+ for (i = 0; i < loopargs_len; i++) {
+ loopargs[i].gcm_ctx = CRYPTO_gcm128_new(&aes_ks1, (block128_f) AES_encrypt);
+ CRYPTO_gcm128_setiv(loopargs[i].gcm_ctx, (unsigned char *)"0123456789ab", 12);
+ }
+
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ print_message(names[D_GHASH], c[D_GHASH][testnum], lengths[testnum]);
+ Time_F(START);
+ count = run_benchmark(async_jobs, CRYPTO_gcm128_aad_loop, loopargs);
+ d = Time_F(STOP);
+ print_result(D_GHASH, testnum, count, d);
+ }
+ for (i = 0; i < loopargs_len; i++)
+ CRYPTO_gcm128_release(loopargs[i].gcm_ctx);
+ }
+
+#ifndef OPENSSL_NO_CAMELLIA
+ if (doit[D_CBC_128_CML]) {
+ if (async_jobs > 0) {
+ BIO_printf(bio_err, "Async mode is not supported with %s\n",
+ names[D_CBC_128_CML]);
+ doit[D_CBC_128_CML] = 0;
+ }
+ for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) {
+ print_message(names[D_CBC_128_CML], c[D_CBC_128_CML][testnum],
+ lengths[testnum]);
+ Time_F(START);
+ for (count = 0, run = 1; COND(c[D_CBC_128_CML][testnum]); count++)
+ Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
+ (size_t)lengths[testnum], &camellia_ks1,
+ iv, CAMELLIA_ENCRYPT);
+ d = Time_F(STOP);
+ print_result(D_CBC_128_CML, testnum, count, d);
+ }
+ }
+ if (doit[D_CBC_192_CML]) {
+ if (async_jobs > 0) {
+ BIO_printf(bio_err, "Async mode is not supported with %s\n",
+ names[D_CBC_192_CML]);
+ doit[D_CBC_192_CML] = 0;
+ }
+ for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) {
+ print_message(names[D_CBC_192_CML], c[D_CBC_192_CML][testnum],
+ lengths[testnum]);
+ if (async_jobs > 0) {
+ BIO_printf(bio_err, "Async mode is not supported, exiting...");
+ exit(1);
+ }
+ Time_F(START);
+ for (count = 0, run = 1; COND(c[D_CBC_192_CML][testnum]); count++)
+ Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
+ (size_t)lengths[testnum], &camellia_ks2,
+ iv, CAMELLIA_ENCRYPT);
+ d = Time_F(STOP);
+ print_result(D_CBC_192_CML, testnum, count, d);
+ }
+ }
+ if (doit[D_CBC_256_CML]) {
+ if (async_jobs > 0) {
+ BIO_printf(bio_err, "Async mode is not supported with %s\n",
+ names[D_CBC_256_CML]);
+ doit[D_CBC_256_CML] = 0;
+ }
+ for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) {
+ print_message(names[D_CBC_256_CML], c[D_CBC_256_CML][testnum],
+ lengths[testnum]);
+ Time_F(START);
+ for (count = 0, run = 1; COND(c[D_CBC_256_CML][testnum]); count++)
+ Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
+ (size_t)lengths[testnum], &camellia_ks3,
+ iv, CAMELLIA_ENCRYPT);
+ d = Time_F(STOP);
+ print_result(D_CBC_256_CML, testnum, count, d);
+ }
+ }
+#endif
+#ifndef OPENSSL_NO_IDEA
+ if (doit[D_CBC_IDEA]) {
+ if (async_jobs > 0) {
+ BIO_printf(bio_err, "Async mode is not supported with %s\n",
+ names[D_CBC_IDEA]);
+ doit[D_CBC_IDEA] = 0;
+ }
+ for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) {
+ print_message(names[D_CBC_IDEA], c[D_CBC_IDEA][testnum], lengths[testnum]);
+ Time_F(START);
+ for (count = 0, run = 1; COND(c[D_CBC_IDEA][testnum]); count++)
+ IDEA_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
+ (size_t)lengths[testnum], &idea_ks,
+ iv, IDEA_ENCRYPT);
+ d = Time_F(STOP);
+ print_result(D_CBC_IDEA, testnum, count, d);
+ }
+ }
+#endif
+#ifndef OPENSSL_NO_SEED
+ if (doit[D_CBC_SEED]) {
+ if (async_jobs > 0) {
+ BIO_printf(bio_err, "Async mode is not supported with %s\n",
+ names[D_CBC_SEED]);
+ doit[D_CBC_SEED] = 0;
+ }
+ for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) {
+ print_message(names[D_CBC_SEED], c[D_CBC_SEED][testnum], lengths[testnum]);
+ Time_F(START);
+ for (count = 0, run = 1; COND(c[D_CBC_SEED][testnum]); count++)
+ SEED_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
+ (size_t)lengths[testnum], &seed_ks, iv, 1);
+ d = Time_F(STOP);
+ print_result(D_CBC_SEED, testnum, count, d);
+ }
+ }
+#endif
+#ifndef OPENSSL_NO_RC2
+ if (doit[D_CBC_RC2]) {
+ if (async_jobs > 0) {
+ BIO_printf(bio_err, "Async mode is not supported with %s\n",
+ names[D_CBC_RC2]);
+ doit[D_CBC_RC2] = 0;
+ }
+ for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) {
+ print_message(names[D_CBC_RC2], c[D_CBC_RC2][testnum], lengths[testnum]);
+ if (async_jobs > 0) {
+ BIO_printf(bio_err, "Async mode is not supported, exiting...");
+ exit(1);
+ }
+ Time_F(START);
+ for (count = 0, run = 1; COND(c[D_CBC_RC2][testnum]); count++)
+ RC2_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
+ (size_t)lengths[testnum], &rc2_ks,
+ iv, RC2_ENCRYPT);
+ d = Time_F(STOP);
+ print_result(D_CBC_RC2, testnum, count, d);
+ }
+ }
+#endif
+#ifndef OPENSSL_NO_RC5
+ if (doit[D_CBC_RC5]) {
+ if (async_jobs > 0) {
+ BIO_printf(bio_err, "Async mode is not supported with %s\n",
+ names[D_CBC_RC5]);
+ doit[D_CBC_RC5] = 0;
+ }
+ for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) {
+ print_message(names[D_CBC_RC5], c[D_CBC_RC5][testnum], lengths[testnum]);
+ if (async_jobs > 0) {
+ BIO_printf(bio_err, "Async mode is not supported, exiting...");
+ exit(1);
+ }
+ Time_F(START);
+ for (count = 0, run = 1; COND(c[D_CBC_RC5][testnum]); count++)
+ RC5_32_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
+ (size_t)lengths[testnum], &rc5_ks,
+ iv, RC5_ENCRYPT);
+ d = Time_F(STOP);
+ print_result(D_CBC_RC5, testnum, count, d);
+ }
+ }
+#endif
+#ifndef OPENSSL_NO_BF
+ if (doit[D_CBC_BF]) {
+ if (async_jobs > 0) {
+ BIO_printf(bio_err, "Async mode is not supported with %s\n",
+ names[D_CBC_BF]);
+ doit[D_CBC_BF] = 0;
+ }
+ for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) {
+ print_message(names[D_CBC_BF], c[D_CBC_BF][testnum], lengths[testnum]);
+ Time_F(START);
+ for (count = 0, run = 1; COND(c[D_CBC_BF][testnum]); count++)
+ BF_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
+ (size_t)lengths[testnum], &bf_ks,
+ iv, BF_ENCRYPT);
+ d = Time_F(STOP);
+ print_result(D_CBC_BF, testnum, count, d);
+ }
+ }
+#endif
+#ifndef OPENSSL_NO_CAST
+ if (doit[D_CBC_CAST]) {
+ if (async_jobs > 0) {
+ BIO_printf(bio_err, "Async mode is not supported with %s\n",
+ names[D_CBC_CAST]);
+ doit[D_CBC_CAST] = 0;
+ }
+ for (testnum = 0; testnum < SIZE_NUM && async_init == 0; testnum++) {
+ print_message(names[D_CBC_CAST], c[D_CBC_CAST][testnum], lengths[testnum]);
+ Time_F(START);
+ for (count = 0, run = 1; COND(c[D_CBC_CAST][testnum]); count++)
+ CAST_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
+ (size_t)lengths[testnum], &cast_ks,
+ iv, CAST_ENCRYPT);
+ d = Time_F(STOP);
+ print_result(D_CBC_CAST, testnum, count, d);
+ }
+ }
+#endif
+
+ if (doit[D_EVP]) {
+ if (multiblock && evp_cipher) {
+ if (!
+ (EVP_CIPHER_flags(evp_cipher) &
+ EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)) {
+ BIO_printf(bio_err, "%s is not multi-block capable\n",
+ OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher)));
+ goto end;
+ }
+ if (async_jobs > 0) {
+ BIO_printf(bio_err, "Async mode is not supported, exiting...");
+ exit(1);
+ }
+ multiblock_speed(evp_cipher);
+ ret = 0;
+ goto end;
+ }
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ if (evp_cipher) {
+
+ names[D_EVP] = OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher));
+ /*
+ * -O3 -fschedule-insns messes up an optimization here!
+ * names[D_EVP] somehow becomes NULL
+ */
+ print_message(names[D_EVP], save_count, lengths[testnum]);
+
+ for (k = 0; k < loopargs_len; k++) {
+ loopargs[k].ctx = EVP_CIPHER_CTX_new();
+ if (decrypt)
+ EVP_DecryptInit_ex(loopargs[k].ctx, evp_cipher, NULL, key16, iv);
+ else
+ EVP_EncryptInit_ex(loopargs[k].ctx, evp_cipher, NULL, key16, iv);
+ EVP_CIPHER_CTX_set_padding(loopargs[k].ctx, 0);
+ }
+
+ Time_F(START);
+ count = run_benchmark(async_jobs, EVP_Update_loop, loopargs);
+ d = Time_F(STOP);
+ for (k = 0; k < loopargs_len; k++) {
+ EVP_CIPHER_CTX_free(loopargs[k].ctx);
+ }
+ }
+ if (evp_md) {
+ names[D_EVP] = OBJ_nid2ln(EVP_MD_type(evp_md));
+ print_message(names[D_EVP], save_count, lengths[testnum]);
+ Time_F(START);
+ count = run_benchmark(async_jobs, EVP_Digest_loop, loopargs);
+ d = Time_F(STOP);
+ }
+ print_result(D_EVP, testnum, count, d);
+ }
+ }
+
+ for (i = 0; i < loopargs_len; i++)
+ RAND_bytes(loopargs[i].buf, 36);
+
+#ifndef OPENSSL_NO_RSA
+ for (testnum = 0; testnum < RSA_NUM; testnum++) {
+ int st = 0;
+ if (!rsa_doit[testnum])
+ continue;
+ for (i = 0; i < loopargs_len; i++) {
+ st = RSA_sign(NID_md5_sha1, loopargs[i].buf, 36, loopargs[i].buf2,
+ &loopargs[i].siglen, loopargs[i].rsa_key[testnum]);
+ if (st == 0)
+ break;
+ }
+ if (st == 0) {
+ BIO_printf(bio_err,
+ "RSA sign failure. No RSA sign will be done.\n");
+ ERR_print_errors(bio_err);
+ rsa_count = 1;
+ } else {
+ pkey_print_message("private", "rsa",
+ rsa_c[testnum][0], rsa_bits[testnum], RSA_SECONDS);
+ /* RSA_blinding_on(rsa_key[testnum],NULL); */
+ Time_F(START);
+ count = run_benchmark(async_jobs, RSA_sign_loop, loopargs);
+ d = Time_F(STOP);
+ BIO_printf(bio_err,
+ mr ? "+R1:%ld:%d:%.2f\n"
+ : "%ld %d bit private RSA's in %.2fs\n",
+ count, rsa_bits[testnum], d);
+ rsa_results[testnum][0] = d / (double)count;
+ rsa_count = count;
+ }
+
+ for (i = 0; i < loopargs_len; i++) {
+ st = RSA_verify(NID_md5_sha1, loopargs[i].buf, 36, loopargs[i].buf2,
+ loopargs[i].siglen, loopargs[i].rsa_key[testnum]);
+ if (st <= 0)
+ break;
+ }
+ if (st <= 0) {
+ BIO_printf(bio_err,
+ "RSA verify failure. No RSA verify will be done.\n");
+ ERR_print_errors(bio_err);
+ rsa_doit[testnum] = 0;
+ } else {
+ pkey_print_message("public", "rsa",
+ rsa_c[testnum][1], rsa_bits[testnum], RSA_SECONDS);
+ Time_F(START);
+ count = run_benchmark(async_jobs, RSA_verify_loop, loopargs);
+ d = Time_F(STOP);
+ BIO_printf(bio_err,
+ mr ? "+R2:%ld:%d:%.2f\n"
+ : "%ld %d bit public RSA's in %.2fs\n",
+ count, rsa_bits[testnum], d);
+ rsa_results[testnum][1] = d / (double)count;
+ }
+
+ if (rsa_count <= 1) {
+ /* if longer than 10s, don't do any more */
+ for (testnum++; testnum < RSA_NUM; testnum++)
+ rsa_doit[testnum] = 0;
+ }
+ }
+#endif /* OPENSSL_NO_RSA */
+
+ for (i = 0; i < loopargs_len; i++)
+ RAND_bytes(loopargs[i].buf, 36);
+
+#ifndef OPENSSL_NO_DSA
+ if (RAND_status() != 1) {
+ RAND_seed(rnd_seed, sizeof(rnd_seed));
+ }
+ for (testnum = 0; testnum < DSA_NUM; testnum++) {
+ int st = 0;
+ if (!dsa_doit[testnum])
+ continue;
+
+ /* DSA_generate_key(dsa_key[testnum]); */
+ /* DSA_sign_setup(dsa_key[testnum],NULL); */
+ for (i = 0; i < loopargs_len; i++) {
+ st = DSA_sign(0, loopargs[i].buf, 20, loopargs[i].buf2,
+ &loopargs[i].siglen, loopargs[i].dsa_key[testnum]);
+ if (st == 0)
+ break;
+ }
+ if (st == 0) {
+ BIO_printf(bio_err,
+ "DSA sign failure. No DSA sign will be done.\n");
+ ERR_print_errors(bio_err);
+ rsa_count = 1;
+ } else {
+ pkey_print_message("sign", "dsa",
+ dsa_c[testnum][0], dsa_bits[testnum], DSA_SECONDS);
+ Time_F(START);
+ count = run_benchmark(async_jobs, DSA_sign_loop, loopargs);
+ d = Time_F(STOP);
+ BIO_printf(bio_err,
+ mr ? "+R3:%ld:%d:%.2f\n"
+ : "%ld %d bit DSA signs in %.2fs\n",
+ count, dsa_bits[testnum], d);
+ dsa_results[testnum][0] = d / (double)count;
+ rsa_count = count;
+ }
+
+ for (i = 0; i < loopargs_len; i++) {
+ st = DSA_verify(0, loopargs[i].buf, 20, loopargs[i].buf2,
+ loopargs[i].siglen, loopargs[i].dsa_key[testnum]);
+ if (st <= 0)
+ break;
+ }
+ if (st <= 0) {
+ BIO_printf(bio_err,
+ "DSA verify failure. No DSA verify will be done.\n");
+ ERR_print_errors(bio_err);
+ dsa_doit[testnum] = 0;
+ } else {
+ pkey_print_message("verify", "dsa",
+ dsa_c[testnum][1], dsa_bits[testnum], DSA_SECONDS);
+ Time_F(START);
+ count = run_benchmark(async_jobs, DSA_verify_loop, loopargs);
+ d = Time_F(STOP);
+ BIO_printf(bio_err,
+ mr ? "+R4:%ld:%d:%.2f\n"
+ : "%ld %d bit DSA verify in %.2fs\n",
+ count, dsa_bits[testnum], d);
+ dsa_results[testnum][1] = d / (double)count;
+ }
+
+ if (rsa_count <= 1) {
+ /* if longer than 10s, don't do any more */
+ for (testnum++; testnum < DSA_NUM; testnum++)
+ dsa_doit[testnum] = 0;
+ }
+ }
+#endif /* OPENSSL_NO_DSA */
+
+#ifndef OPENSSL_NO_EC
+ if (RAND_status() != 1) {
+ RAND_seed(rnd_seed, sizeof(rnd_seed));
+ }
+ for (testnum = 0; testnum < EC_NUM; testnum++) {
+ int st = 1;
+
+ if (!ecdsa_doit[testnum])
+ continue; /* Ignore Curve */
+ for (i = 0; i < loopargs_len; i++) {
+ loopargs[i].ecdsa[testnum] = EC_KEY_new_by_curve_name(test_curves[testnum]);
+ if (loopargs[i].ecdsa[testnum] == NULL) {
+ st = 0;
+ break;
+ }
+ }
+ if (st == 0) {
+ BIO_printf(bio_err, "ECDSA failure.\n");
+ ERR_print_errors(bio_err);
+ rsa_count = 1;
+ } else {
+ for (i = 0; i < loopargs_len; i++) {
+ EC_KEY_precompute_mult(loopargs[i].ecdsa[testnum], NULL);
+ /* Perform ECDSA signature test */
+ EC_KEY_generate_key(loopargs[i].ecdsa[testnum]);
+ st = ECDSA_sign(0, loopargs[i].buf, 20, loopargs[i].buf2,
+ &loopargs[i].siglen, loopargs[i].ecdsa[testnum]);
+ if (st == 0)
+ break;
+ }
+ if (st == 0) {
+ BIO_printf(bio_err,
+ "ECDSA sign failure. No ECDSA sign will be done.\n");
+ ERR_print_errors(bio_err);
+ rsa_count = 1;
+ } else {
+ pkey_print_message("sign", "ecdsa",
+ ecdsa_c[testnum][0],
+ test_curves_bits[testnum], ECDSA_SECONDS);
+ Time_F(START);
+ count = run_benchmark(async_jobs, ECDSA_sign_loop, loopargs);
+ d = Time_F(STOP);
+
+ BIO_printf(bio_err,
+ mr ? "+R5:%ld:%d:%.2f\n" :
+ "%ld %d bit ECDSA signs in %.2fs \n",
+ count, test_curves_bits[testnum], d);
+ ecdsa_results[testnum][0] = d / (double)count;
+ rsa_count = count;
+ }
+
+ /* Perform ECDSA verification test */
+ for (i = 0; i < loopargs_len; i++) {
+ st = ECDSA_verify(0, loopargs[i].buf, 20, loopargs[i].buf2,
+ loopargs[i].siglen, loopargs[i].ecdsa[testnum]);
+ if (st != 1)
+ break;
+ }
+ if (st != 1) {
+ BIO_printf(bio_err,
+ "ECDSA verify failure. No ECDSA verify will be done.\n");
+ ERR_print_errors(bio_err);
+ ecdsa_doit[testnum] = 0;
+ } else {
+ pkey_print_message("verify", "ecdsa",
+ ecdsa_c[testnum][1],
+ test_curves_bits[testnum], ECDSA_SECONDS);
+ Time_F(START);
+ count = run_benchmark(async_jobs, ECDSA_verify_loop, loopargs);
+ d = Time_F(STOP);
+ BIO_printf(bio_err,
+ mr ? "+R6:%ld:%d:%.2f\n"
+ : "%ld %d bit ECDSA verify in %.2fs\n",
+ count, test_curves_bits[testnum], d);
+ ecdsa_results[testnum][1] = d / (double)count;
+ }
+
+ if (rsa_count <= 1) {
+ /* if longer than 10s, don't do any more */
+ for (testnum++; testnum < EC_NUM; testnum++)
+ ecdsa_doit[testnum] = 0;
+ }
+ }
+ }
+
+ if (RAND_status() != 1) {
+ RAND_seed(rnd_seed, sizeof(rnd_seed));
+ }
+ for (testnum = 0; testnum < EC_NUM; testnum++) {
+ int ecdh_checks = 1;
+
+ if (!ecdh_doit[testnum])
+ continue;
+ for (i = 0; i < loopargs_len; i++) {
+ loopargs[i].ecdh_a[testnum] = EC_KEY_new_by_curve_name(test_curves[testnum]);
+ loopargs[i].ecdh_b[testnum] = EC_KEY_new_by_curve_name(test_curves[testnum]);
+ if (loopargs[i].ecdh_a[testnum] == NULL ||
+ loopargs[i].ecdh_b[testnum] == NULL) {
+ ecdh_checks = 0;
+ break;
+ }
+ }
+ if (ecdh_checks == 0) {
+ BIO_printf(bio_err, "ECDH failure.\n");
+ ERR_print_errors(bio_err);
+ rsa_count = 1;
+ } else {
+ for (i = 0; i < loopargs_len; i++) {
+ /* generate two ECDH key pairs */
+ if (!EC_KEY_generate_key(loopargs[i].ecdh_a[testnum]) ||
+ !EC_KEY_generate_key(loopargs[i].ecdh_b[testnum])) {
+ BIO_printf(bio_err, "ECDH key generation failure.\n");
+ ERR_print_errors(bio_err);
+ ecdh_checks = 0;
+ rsa_count = 1;
+ } else {
+ int secret_size_a, secret_size_b;
+ /*
+ * If field size is not more than 24 octets, then use SHA-1
+ * hash of result; otherwise, use result (see section 4.8 of
+ * draft-ietf-tls-ecc-03.txt).
+ */
+ int field_size = EC_GROUP_get_degree(
+ EC_KEY_get0_group(loopargs[i].ecdh_a[testnum]));
+
+ if (field_size <= 24 * 8) { /* 192 bits */
+ loopargs[i].outlen = KDF1_SHA1_len;
+ loopargs[i].kdf = KDF1_SHA1;
+ } else {
+ loopargs[i].outlen = (field_size + 7) / 8;
+ loopargs[i].kdf = NULL;
+ }
+ secret_size_a =
+ ECDH_compute_key(loopargs[i].secret_a, loopargs[i].outlen,
+ EC_KEY_get0_public_key(loopargs[i].ecdh_b[testnum]),
+ loopargs[i].ecdh_a[testnum], loopargs[i].kdf);
+ secret_size_b =
+ ECDH_compute_key(loopargs[i].secret_b, loopargs[i].outlen,
+ EC_KEY_get0_public_key(loopargs[i].ecdh_a[testnum]),
+ loopargs[i].ecdh_b[testnum], loopargs[i].kdf);
+ if (secret_size_a != secret_size_b)
+ ecdh_checks = 0;
+ else
+ ecdh_checks = 1;
+
+ for (k = 0; k < secret_size_a && ecdh_checks == 1; k++) {
+ if (loopargs[i].secret_a[k] != loopargs[i].secret_b[k])
+ ecdh_checks = 0;
+ }
+
+ if (ecdh_checks == 0) {
+ BIO_printf(bio_err, "ECDH computations don't match.\n");
+ ERR_print_errors(bio_err);
+ rsa_count = 1;
+ break;
+ }
+ }
+ }
+ if (ecdh_checks != 0) {
+ pkey_print_message("", "ecdh",
+ ecdh_c[testnum][0],
+ test_curves_bits[testnum], ECDH_SECONDS);
+ Time_F(START);
+ count = run_benchmark(async_jobs, ECDH_compute_key_loop, loopargs);
+ d = Time_F(STOP);
+ BIO_printf(bio_err,
+ mr ? "+R7:%ld:%d:%.2f\n" :
+ "%ld %d-bit ECDH ops in %.2fs\n", count,
+ test_curves_bits[testnum], d);
+ ecdh_results[testnum][0] = d / (double)count;
+ rsa_count = count;
+ }
+ }
+
+ if (rsa_count <= 1) {
+ /* if longer than 10s, don't do any more */
+ for (testnum++; testnum < EC_NUM; testnum++)
+ ecdh_doit[testnum] = 0;
+ }
+ }
+#endif /* OPENSSL_NO_EC */
+#ifndef NO_FORK
+ show_res:
+#endif
+ if (!mr) {
+ printf("%s\n", OpenSSL_version(OPENSSL_VERSION));
+ printf("%s\n", OpenSSL_version(OPENSSL_BUILT_ON));
+ printf("options:");
+ printf("%s ", BN_options());
+#ifndef OPENSSL_NO_MD2
+ printf("%s ", MD2_options());
+#endif
+#ifndef OPENSSL_NO_RC4
+ printf("%s ", RC4_options());
+#endif
+#ifndef OPENSSL_NO_DES
+ printf("%s ", DES_options());
+#endif
+ printf("%s ", AES_options());
+#ifndef OPENSSL_NO_IDEA
+ printf("%s ", IDEA_options());
+#endif
+#ifndef OPENSSL_NO_BF
+ printf("%s ", BF_options());
+#endif
+ printf("\n%s\n", OpenSSL_version(OPENSSL_CFLAGS));
+ }
+
+ if (pr_header) {
+ if (mr)
+ printf("+H");
+ else {
+ printf
+ ("The 'numbers' are in 1000s of bytes per second processed.\n");
+ printf("type ");
+ }
+ for (testnum = 0; testnum < SIZE_NUM; testnum++)
+ printf(mr ? ":%d" : "%7d bytes", lengths[testnum]);
+ printf("\n");
+ }
+
+ for (k = 0; k < ALGOR_NUM; k++) {
+ if (!doit[k])
+ continue;
+ if (mr)
+ printf("+F:%d:%s", k, names[k]);
+ else
+ printf("%-13s", names[k]);
+ for (testnum = 0; testnum < SIZE_NUM; testnum++) {
+ if (results[k][testnum] > 10000 && !mr)
+ printf(" %11.2fk", results[k][testnum] / 1e3);
+ else
+ printf(mr ? ":%.2f" : " %11.2f ", results[k][testnum]);
+ }
+ printf("\n");
+ }
+#ifndef OPENSSL_NO_RSA
+ testnum = 1;
+ for (k = 0; k < RSA_NUM; k++) {
+ if (!rsa_doit[k])
+ continue;
+ if (testnum && !mr) {
+ printf("%18ssign verify sign/s verify/s\n", " ");
+ testnum = 0;
+ }
+ if (mr)
+ printf("+F2:%u:%u:%f:%f\n",
+ k, rsa_bits[k], rsa_results[k][0], rsa_results[k][1]);
+ else
+ printf("rsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n",
+ rsa_bits[k], rsa_results[k][0], rsa_results[k][1],
+ 1.0 / rsa_results[k][0], 1.0 / rsa_results[k][1]);
+ }
+#endif
+#ifndef OPENSSL_NO_DSA
+ testnum = 1;
+ for (k = 0; k < DSA_NUM; k++) {
+ if (!dsa_doit[k])
+ continue;
+ if (testnum && !mr) {
+ printf("%18ssign verify sign/s verify/s\n", " ");
+ testnum = 0;
+ }
+ if (mr)
+ printf("+F3:%u:%u:%f:%f\n",
+ k, dsa_bits[k], dsa_results[k][0], dsa_results[k][1]);
+ else
+ printf("dsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n",
+ dsa_bits[k], dsa_results[k][0], dsa_results[k][1],
+ 1.0 / dsa_results[k][0], 1.0 / dsa_results[k][1]);
+ }
+#endif
+#ifndef OPENSSL_NO_EC
+ testnum = 1;
+ for (k = 0; k < EC_NUM; k++) {
+ if (!ecdsa_doit[k])
+ continue;
+ if (testnum && !mr) {
+ printf("%30ssign verify sign/s verify/s\n", " ");
+ testnum = 0;
+ }
+
+ if (mr)
+ printf("+F4:%u:%u:%f:%f\n",
+ k, test_curves_bits[k],
+ ecdsa_results[k][0], ecdsa_results[k][1]);
+ else
+ printf("%4u bit ecdsa (%s) %8.4fs %8.4fs %8.1f %8.1f\n",
+ test_curves_bits[k],
+ test_curves_names[k],
+ ecdsa_results[k][0], ecdsa_results[k][1],
+ 1.0 / ecdsa_results[k][0], 1.0 / ecdsa_results[k][1]);
+ }
+
+ testnum = 1;
+ for (k = 0; k < EC_NUM; k++) {
+ if (!ecdh_doit[k])
+ continue;
+ if (testnum && !mr) {
+ printf("%30sop op/s\n", " ");
+ testnum = 0;
+ }
+ if (mr)
+ printf("+F5:%u:%u:%f:%f\n",
+ k, test_curves_bits[k],
+ ecdh_results[k][0], 1.0 / ecdh_results[k][0]);
+
+ else
+ printf("%4u bit ecdh (%s) %8.4fs %8.1f\n",
+ test_curves_bits[k],
+ test_curves_names[k],
+ ecdh_results[k][0], 1.0 / ecdh_results[k][0]);
+ }
+#endif
+
+ ret = 0;
+
+ end:
+ ERR_print_errors(bio_err);
+ for (i = 0; i < loopargs_len; i++) {
+ OPENSSL_free(loopargs[i].buf_malloc);
+ OPENSSL_free(loopargs[i].buf2_malloc);
+
+#ifndef OPENSSL_NO_RSA
+ for (k = 0; k < RSA_NUM; k++)
+ RSA_free(loopargs[i].rsa_key[k]);
+#endif
+#ifndef OPENSSL_NO_DSA
+ for (k = 0; k < DSA_NUM; k++)
+ DSA_free(loopargs[i].dsa_key[k]);
+#endif
+#ifndef OPENSSL_NO_EC
+ for (k = 0; k < EC_NUM; k++) {
+ EC_KEY_free(loopargs[i].ecdsa[k]);
+ EC_KEY_free(loopargs[i].ecdh_a[k]);
+ EC_KEY_free(loopargs[i].ecdh_b[k]);
+ }
+ OPENSSL_free(loopargs[i].secret_a);
+ OPENSSL_free(loopargs[i].secret_b);
+#endif
+ }
+
+ if (async_jobs > 0) {
+ for (i = 0; i < loopargs_len; i++)
+ ASYNC_WAIT_CTX_free(loopargs[i].wait_ctx);
+ }
+
+ if (async_init) {
+ ASYNC_cleanup_thread();
+ }
+ OPENSSL_free(loopargs);
+ release_engine(e);
+ return (ret);
+}
+
+static void print_message(const char *s, long num, int length)
+{
+#ifdef SIGALRM
+ BIO_printf(bio_err,
+ mr ? "+DT:%s:%d:%d\n"
+ : "Doing %s for %ds on %d size blocks: ", s, SECONDS, length);
+ (void)BIO_flush(bio_err);
+ alarm(SECONDS);
+#else
+ BIO_printf(bio_err,
+ mr ? "+DN:%s:%ld:%d\n"
+ : "Doing %s %ld times on %d size blocks: ", s, num, length);
+ (void)BIO_flush(bio_err);
+#endif
+}
+
+static void pkey_print_message(const char *str, const char *str2, long num,
+ int bits, int tm)
+{
+#ifdef SIGALRM
+ BIO_printf(bio_err,
+ mr ? "+DTP:%d:%s:%s:%d\n"
+ : "Doing %d bit %s %s's for %ds: ", bits, str, str2, tm);
+ (void)BIO_flush(bio_err);
+ alarm(tm);
+#else
+ BIO_printf(bio_err,
+ mr ? "+DNP:%ld:%d:%s:%s\n"
+ : "Doing %ld %d bit %s %s's: ", num, bits, str, str2);
+ (void)BIO_flush(bio_err);
+#endif
+}
+
+static void print_result(int alg, int run_no, int count, double time_used)
+{
+ if (count == -1) {
+ BIO_puts(bio_err, "EVP error!\n");
+ exit(1);
+ }
+ BIO_printf(bio_err,
+ mr ? "+R:%d:%s:%f\n"
+ : "%d %s's in %.2fs\n", count, names[alg], time_used);
+ results[alg][run_no] = ((double)count) / time_used * lengths[run_no];
+}
+
+#ifndef NO_FORK
+static char *sstrsep(char **string, const char *delim)
+{
+ char isdelim[256];
+ char *token = *string;
+
+ if (**string == 0)
+ return NULL;
+
+ memset(isdelim, 0, sizeof(isdelim));
+ isdelim[0] = 1;
+
+ while (*delim) {
+ isdelim[(unsigned char)(*delim)] = 1;
+ delim++;
+ }
+
+ while (!isdelim[(unsigned char)(**string)]) {
+ (*string)++;
+ }
+
+ if (**string) {
+ **string = 0;
+ (*string)++;
+ }
+
+ return token;
+}
+
+static int do_multi(int multi)
+{
+ int n;
+ int fd[2];
+ int *fds;
+ static char sep[] = ":";
+
+ fds = malloc(sizeof(*fds) * multi);
+ for (n = 0; n < multi; ++n) {
+ if (pipe(fd) == -1) {
+ BIO_printf(bio_err, "pipe failure\n");
+ exit(1);
+ }
+ fflush(stdout);
+ (void)BIO_flush(bio_err);
+ if (fork()) {
+ close(fd[1]);
+ fds[n] = fd[0];
+ } else {
+ close(fd[0]);
+ close(1);
+ if (dup(fd[1]) == -1) {
+ BIO_printf(bio_err, "dup failed\n");
+ exit(1);
+ }
+ close(fd[1]);
+ mr = 1;
+ usertime = 0;
+ free(fds);
+ return 0;
+ }
+ printf("Forked child %d\n", n);
+ }
+
+ /* for now, assume the pipe is long enough to take all the output */
+ for (n = 0; n < multi; ++n) {
+ FILE *f;
+ char buf[1024];
+ char *p;
+
+ f = fdopen(fds[n], "r");
+ while (fgets(buf, sizeof(buf), f)) {
+ p = strchr(buf, '\n');
+ if (p)
+ *p = '\0';
+ if (buf[0] != '+') {
+ BIO_printf(bio_err, "Don't understand line '%s' from child %d\n",
+ buf, n);
+ continue;
+ }
+ printf("Got: %s from %d\n", buf, n);
+ if (strncmp(buf, "+F:", 3) == 0) {
+ int alg;
+ int j;
+
+ p = buf + 3;
+ alg = atoi(sstrsep(&p, sep));
+ sstrsep(&p, sep);
+ for (j = 0; j < SIZE_NUM; ++j)
+ results[alg][j] += atof(sstrsep(&p, sep));
+ } else if (strncmp(buf, "+F2:", 4) == 0) {
+ int k;
+ double d;
+
+ p = buf + 4;
+ k = atoi(sstrsep(&p, sep));
+ sstrsep(&p, sep);
+
+ d = atof(sstrsep(&p, sep));
+ if (n)
+ rsa_results[k][0] = 1 / (1 / rsa_results[k][0] + 1 / d);
+ else
+ rsa_results[k][0] = d;
+
+ d = atof(sstrsep(&p, sep));
+ if (n)
+ rsa_results[k][1] = 1 / (1 / rsa_results[k][1] + 1 / d);
+ else
+ rsa_results[k][1] = d;
+ }
+# ifndef OPENSSL_NO_DSA
+ else if (strncmp(buf, "+F3:", 4) == 0) {
+ int k;
+ double d;
+
+ p = buf + 4;
+ k = atoi(sstrsep(&p, sep));
+ sstrsep(&p, sep);
+
+ d = atof(sstrsep(&p, sep));
+ if (n)
+ dsa_results[k][0] = 1 / (1 / dsa_results[k][0] + 1 / d);
+ else
+ dsa_results[k][0] = d;
+
+ d = atof(sstrsep(&p, sep));
+ if (n)
+ dsa_results[k][1] = 1 / (1 / dsa_results[k][1] + 1 / d);
+ else
+ dsa_results[k][1] = d;
+ }
+# endif
+# ifndef OPENSSL_NO_EC
+ else if (strncmp(buf, "+F4:", 4) == 0) {
+ int k;
+ double d;
+
+ p = buf + 4;
+ k = atoi(sstrsep(&p, sep));
+ sstrsep(&p, sep);
+
+ d = atof(sstrsep(&p, sep));
+ if (n)
+ ecdsa_results[k][0] =
+ 1 / (1 / ecdsa_results[k][0] + 1 / d);
+ else
+ ecdsa_results[k][0] = d;
+
+ d = atof(sstrsep(&p, sep));
+ if (n)
+ ecdsa_results[k][1] =
+ 1 / (1 / ecdsa_results[k][1] + 1 / d);
+ else
+ ecdsa_results[k][1] = d;
+ } else if (strncmp(buf, "+F5:", 4) == 0) {
+ int k;
+ double d;
+
+ p = buf + 4;
+ k = atoi(sstrsep(&p, sep));
+ sstrsep(&p, sep);
+
+ d = atof(sstrsep(&p, sep));
+ if (n)
+ ecdh_results[k][0] = 1 / (1 / ecdh_results[k][0] + 1 / d);
+ else
+ ecdh_results[k][0] = d;
+
+ }
+# endif
+
+ else if (strncmp(buf, "+H:", 3) == 0) {
+ ;
+ } else
+ BIO_printf(bio_err, "Unknown type '%s' from child %d\n", buf, n);
+ }
+
+ fclose(f);
+ }
+ free(fds);
+ return 1;
+}
+#endif
+
+static void multiblock_speed(const EVP_CIPHER *evp_cipher)
+{
+ static int mblengths[] =
+ { 8 * 1024, 2 * 8 * 1024, 4 * 8 * 1024, 8 * 8 * 1024, 8 * 16 * 1024 };
+ int j, count, num = OSSL_NELEM(mblengths);
+ const char *alg_name;
+ unsigned char *inp, *out, no_key[32], no_iv[16];
+ EVP_CIPHER_CTX *ctx;
+ double d = 0.0;
+
+ inp = app_malloc(mblengths[num - 1], "multiblock input buffer");
+ out = app_malloc(mblengths[num - 1] + 1024, "multiblock output buffer");
+ ctx = EVP_CIPHER_CTX_new();
+ EVP_EncryptInit_ex(ctx, evp_cipher, NULL, no_key, no_iv);
+ EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_MAC_KEY, sizeof(no_key),
+ no_key);
+ alg_name = OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher));
+
+ for (j = 0; j < num; j++) {
+ print_message(alg_name, 0, mblengths[j]);
+ Time_F(START);
+ for (count = 0, run = 1; run && count < 0x7fffffff; count++) {
+ unsigned char aad[EVP_AEAD_TLS1_AAD_LEN];
+ EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM mb_param;
+ size_t len = mblengths[j];
+ int packlen;
+
+ memset(aad, 0, 8); /* avoid uninitialized values */
+ aad[8] = 23; /* SSL3_RT_APPLICATION_DATA */
+ aad[9] = 3; /* version */
+ aad[10] = 2;
+ aad[11] = 0; /* length */
+ aad[12] = 0;
+ mb_param.out = NULL;
+ mb_param.inp = aad;
+ mb_param.len = len;
+ mb_param.interleave = 8;
+
+ packlen = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_AAD,
+ sizeof(mb_param), &mb_param);
+
+ if (packlen > 0) {
+ mb_param.out = out;
+ mb_param.inp = inp;
+ mb_param.len = len;
+ EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT,
+ sizeof(mb_param), &mb_param);
+ } else {
+ int pad;
+
+ RAND_bytes(out, 16);
+ len += 16;
+ aad[11] = len >> 8;
+ aad[12] = len;
+ pad = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_TLS1_AAD,
+ EVP_AEAD_TLS1_AAD_LEN, aad);
+ EVP_Cipher(ctx, out, inp, len + pad);
+ }
+ }
+ d = Time_F(STOP);
+ BIO_printf(bio_err, mr ? "+R:%d:%s:%f\n"
+ : "%d %s's in %.2fs\n", count, "evp", d);
+ results[D_EVP][j] = ((double)count) / d * mblengths[j];
+ }
+
+ if (mr) {
+ fprintf(stdout, "+H");
+ for (j = 0; j < num; j++)
+ fprintf(stdout, ":%d", mblengths[j]);
+ fprintf(stdout, "\n");
+ fprintf(stdout, "+F:%d:%s", D_EVP, alg_name);
+ for (j = 0; j < num; j++)
+ fprintf(stdout, ":%.2f", results[D_EVP][j]);
+ fprintf(stdout, "\n");
+ } else {
+ fprintf(stdout,
+ "The 'numbers' are in 1000s of bytes per second processed.\n");
+ fprintf(stdout, "type ");
+ for (j = 0; j < num; j++)
+ fprintf(stdout, "%7d bytes", mblengths[j]);
+ fprintf(stdout, "\n");
+ fprintf(stdout, "%-24s", alg_name);
+
+ for (j = 0; j < num; j++) {
+ if (results[D_EVP][j] > 10000)
+ fprintf(stdout, " %11.2fk", results[D_EVP][j] / 1e3);
+ else
+ fprintf(stdout, " %11.2f ", results[D_EVP][j]);
+ }
+ fprintf(stdout, "\n");
+ }
+
+ OPENSSL_free(inp);
+ OPENSSL_free(out);
+ EVP_CIPHER_CTX_free(ctx);
+}