/* Copyright 2019 Wojciech Kosior This is free and unencumbered software released into the public domain. Anyone is free to copy, modify, publish, use, compile, sell, or distribute this software, either in source code form or as a compiled binary, for any purpose, commercial or non-commercial, and by any means. In jurisdictions that recognize copyright laws, the author or authors of this software dedicate any and all copyright interest in the software to the public domain. We make this dedication for the benefit of the public at large and to the detriment of our heirs and successors. We intend this dedication to be an overt act of relinquishment in perpetuity of all present and future rights to this software under copyright law. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. For more information, please refer to */ // https://libregit.org/koszko/C_hashtable // GENERAL INFO // You might want to read the beginning of hashtable.h first. // In some places "rehashing" and in other ones "resizing" seemed to // be the right word to use. They mean more or less the same. // Functions starting with ht_ are part of the API. Internal functions // are declared static. I also made some of them inline (either // because they were extremely short or only called from 1 place). // Hashtable size is always a power of 2. // When the hashtable is ¾ full, a new, 2x bigger table is allocated // and whenever one of 4 basic operations (adding, removing, setting, // getting) occurs, 4 slots are being rehashed from old table into 8 // slots in new table. Similarly, when hashtable is ¼ full, a new, // 2x smaller table is allocated and each of subsequent operations // rehashes 8 entries from old table into 4 in new table. // This mechanism has been made lazier: getting and removing don't // trigger growing of ht even if it's 3/4 full. Similarly, getting, // setting and adding don't trigger shrinking. // Once resizing is triggered, however, any of the operations will // contribute to rehashing. Even if, for example, the operation is // ADD and the table is being shrinked. // This means, that if we have a hashtable of size n which is ¾ full // and growing is triggered, then each subsequent call to // ht_{add,rem,get,set}() rehashes some entries and, depending on // how frequently and how successfully each of these 4 funcs was // called, at the end of resizing we get a size 2n hashtable which is // between ¼ and ½ full. Similarly, if shrinking of a ¼ full // hashtable of size n is triggered, then after some operations we // get a size ½n hashtable, that is somewhere between ¼ and ¾ full. // One can see now, that we always keep the hashtable between ¼ and ¾ // full (with the exception of a minimal size one, that can be empty). #include "hashtable.h" #include #include #include #include // We won't shrink hashtable below this size. Newly created one will // be this big. #define MIN_SIZE 32 // Special value of ht->rehashing_position. #define NOT_REHASHING ((ssize_t) -1) // Those are possible return values of do_resizing_related_stuff() // and rehash_some_entries() (which only returns the first 2). #define REHASHING_IN_PROGRESS 0 #define REHASHING_NOT_IN_PROGRESS 1 #define REHASHING_NO_MEM 2 enum op { GET, ADD, SET, REM, }; int ht_init(hashtable_t *ht, size_t (*hash)(void *key), int (*cmp)(void *key1, void *key2)) { if (!(ht->tab = calloc(MIN_SIZE, sizeof(struct ht_node**)))) return HT_NO_MEM; ht->tab_size = MIN_SIZE; ht->rehashing_position = NOT_REHASHING; ht->entries = 0; ht->hashfunc = hash; ht->cmpfunc = cmp; return HT_OK; } // First come some utilities :) static inline size_t min(size_t n1, size_t n2) { return n1 < n2 ? n1 : n2; } static inline size_t hash2(size_t n) { // I found this "hash improver" on the internet. n ^= (n >> 20) ^ (n >> 12); return n ^ (n >> 7) ^ (n >> 4); } // Below are 2 list-handling utility functions. static inline struct ht_node *join_lists(struct ht_node *l1, struct ht_node *l2) { if (!l1) return l2; if (!l2) return l1; struct ht_node *l1_last; for (l1_last = l1; l1_last->next; l1_last = l1_last->next); // Append l2 to the end of l1. l1_last->next = l2; // For convenience return the first element of the resulting list. return l1; } static inline void push(struct ht_node *node, struct ht_node **list) { node->next = *list; *list = node; } // The following 2 rehash_* functions are helpers of // rehash_some_entries(). // This func rehashes 1 chain of entries in tab[] // into 2 chains in newtab[]. static inline void rehash_position_growing(hashtable_t *ht) { // There are 2 possible new positions of an entry in a 2x bigger ht. struct ht_node *list0 = NULL, *list1 = NULL; size_t old_position = ht->rehashing_position, new_position0 = old_position, new_position1 = old_position | ht->tab_size; struct ht_node *pair = ht->tab[old_position], *next_pair; while (pair) { next_pair = pair->next; size_t new_position = hash2(ht->hashfunc(pair->key)) & (ht->new_size - 1); push(pair, new_position == new_position1 ? &list1 : &list0); pair = next_pair; } ht->newtab[new_position0] = list0; ht->newtab[new_position1] = list1; ht->rehashing_position++; } // This func rehashes 2 chains of entries in tab[] // into 1 chain in newtab[]. static inline void rehash_2positions_shrinking(hashtable_t *ht) { size_t new_position = ht->rehashing_position, old_position0 = new_position, old_position1 = new_position | ht->new_size; ht->newtab[new_position] = join_lists(ht->tab[old_position0], ht->tab[old_position1]); ht->rehashing_position++; } // Rehashes 4(8) positions from tab to newtab. If those were the last // enetries to rehash, the function takes care of everything // (like deallocating old tab) and returns REHASHING_NOT_IN_PROGRESS. // Otherwise, returns REHASHING_IN_PROGRESS. // Caller must make sure rehashing was started b4 calling this func. static int rehash_some_entries(hashtable_t *ht) { int rehashes_left = 4; if (ht->new_size > ht->tab_size) // growing ht { while(rehashes_left--) rehash_position_growing(ht); if (ht->rehashing_position != ht->tab_size) return REHASHING_IN_PROGRESS; } else // shrinking ht { while(rehashes_left--) rehash_2positions_shrinking(ht); if (ht->rehashing_position != ht->new_size) return REHASHING_IN_PROGRESS; } // rehashing finishes ht->rehashing_position = NOT_REHASHING; ht->tab_size = ht->new_size; free(ht->tab); ht->tab = ht->newtab; return REHASHING_NOT_IN_PROGRESS; } static inline bool resizing_taking_place(hashtable_t *ht) { return !(ht->rehashing_position == NOT_REHASHING); } void ht_finish_resizing(hashtable_t *ht) { if (resizing_taking_place(ht)) while (rehash_some_entries(ht) == REHASHING_IN_PROGRESS); } static inline bool needs_growing(hashtable_t *ht) { return ht->entries == 3 * ht->tab_size / 4; } static inline bool needs_shrinking(hashtable_t *ht) { return ht->tab_size > MIN_SIZE && ht->entries == ht->tab_size / 4; } // Each of hashtable operations (add, set, rem, get) should also // attempt to do part of resizing. This way resizing operation // which is O(n) is distributed among many hashtable accesses // each of them still being O(1). Without this the the amortized // complexity of ht accesses would still be O(1), but a single access // would sometimes be O(n). // Other function that adds, sets, gets or removes sth from ht uses // this one to do this "part of resizing" mentioned above. // This func returns REHASHING_NO_MEM on failed malloc (won't happen // for GET operation) and REHASHING_(NOT_)IN_PROGRESS otherwise. static inline int do_resizing_related_stuff(hashtable_t *ht, void *key, enum op op) { bool resizing = resizing_taking_place(ht); if (!resizing) { size_t new_size; switch (op) { case GET: goto dont_start_resizing; case ADD: case SET: if (needs_growing(ht)) new_size = ht->tab_size * 2; else goto dont_start_resizing; break; default: // case REM if (needs_shrinking(ht)) new_size = ht->tab_size / 2; else goto dont_start_resizing; } struct ht_node **newtab; if (!(newtab = malloc(new_size * sizeof(struct ht_node*)))) return REHASHING_NO_MEM; ht->newtab = newtab; ht->new_size = new_size; ht->rehashing_position = 0; resizing = true; } dont_start_resizing: return resizing ? rehash_some_entries(ht) : REHASHING_NOT_IN_PROGRESS; } // This is a chaining hashtable, so each element in the array (table) // is actually a list of entries. All operations (adding, removing, // etc.) need to find the right list of entries (here called "bucket") // for a given key first, so it makes sense to do it in a separate // function. The bucket may be in tab or newtab if resizing is taking // place. Being informed by the caller if resizing is in progress, // this func does not need to check for it itself. static inline struct ht_node **find_bucket(hashtable_t *ht, void *key, bool resizing_in_progress) { size_t hash = hash2(ht->hashfunc(key)), destination_tab_size, position; struct ht_node **destination_tab; if (resizing_in_progress) // Here we must check whether our key's bucket is still // in ht->tab or already rehashed to ht->newtab. { size_t smaller_tab_size = min(ht->tab_size, ht->new_size), smaller_tab_position = hash & (smaller_tab_size - 1); if (smaller_tab_position < ht->rehashing_position) { destination_tab = ht->newtab; destination_tab_size = ht->new_size; } else { destination_tab = ht->tab; destination_tab_size = ht->tab_size; } } else // In this case we know, we're working on ht->tab and not newtab. { destination_tab = ht->tab; destination_tab_size = ht->tab_size; } position = hash & (destination_tab_size - 1); return &destination_tab[position]; } // Operations of adding, removing, etc. all work on list of entries // (bucket) to wchich key hashes and they have some common logic, so // it made sense to make a single function, that does the right // operation based on an enum passed to it. static inline int perform_operation_on_bucket(hashtable_t *ht, struct ht_node **bucket, void *key, void *val, void **keyptr, void **valptr, enum op op) { for (struct ht_node **pairptr = bucket, *pair = *pairptr; pair; pairptr = &pair->next, pair = pair->next) if (!ht->cmpfunc(key, pair->key)) { if (op == ADD) return HT_KEY_PRESENT; if (keyptr) *keyptr = pair->key; if (valptr) *valptr = pair->val; switch (op) { case GET: { return HT_OK; } case SET: { pair->key = key; pair->val = val; return HT_OK; } default: // case REM { *pairptr = pair->next; free(pair); ht->entries--; return HT_OK; } } } if (op == GET || op == REM) return HT_KEY_ABSENT; // op == ADD || op == SET struct ht_node *new_pair = malloc(sizeof(struct ht_node)); if (!new_pair) return HT_NO_MEM; *new_pair = (struct ht_node) {.key = key, .val = val}; push(new_pair, bucket); ht->entries++; return HT_OK; } // Generic function for performing of adding, removing, setting and // getting. static int perform_operation(hashtable_t *ht, void *key, void *val, void **keyptr, void **valptr, enum op op) { bool resizing_in_progress; switch (do_resizing_related_stuff(ht, key, op)) { case REHASHING_IN_PROGRESS: resizing_in_progress = true; break; case REHASHING_NOT_IN_PROGRESS: resizing_in_progress = false; break; default: // case REHASHING_NO_MEM return HT_NO_MEM; } struct ht_node **bucket = find_bucket(ht, key, resizing_in_progress); return perform_operation_on_bucket(ht, bucket, key, val, keyptr, valptr, op); } // The 4 functions below are the main part of the API. int ht_get(hashtable_t *ht, void *key, void **storedkey, void **val) { return perform_operation(ht, key, NULL, storedkey, val, GET); } int ht_add(hashtable_t *ht, void *key, void *val) { return perform_operation(ht, key, val, NULL, NULL, ADD); } int ht_set(hashtable_t *ht, void *key, void *val, void **oldkey, void **oldval) { return perform_operation(ht, key, val, oldkey, oldval, SET); } int ht_rem(hashtable_t *ht, void *key, void **storedkey, void **val) { return perform_operation(ht, key, NULL, storedkey, val, REM); } // As mentioned in hashtable.h, this func does not deallocate keys // nor vals. One could use ht_map() to free() them before calling this // func. void ht_destroy(hashtable_t *ht) { if (!ht->entries) return; ht_finish_resizing(ht); struct ht_node **tab = ht->tab; for (ssize_t position = ht->tab_size - 1; position >= 0; position--) { struct ht_node *pair = tab[position], *nextpair; while (pair) { nextpair = pair->next; free(pair); pair = nextpair; } } free(ht->tab); } void ht_map(hashtable_t *ht, void *arg, void (*mapfunc)(void *key, void *val, void *arg)) { if (!ht->entries) return; ht_finish_resizing(ht); struct ht_node **tab = ht->tab; for (ssize_t position = ht->tab_size - 1; position >= 0; position--) for (struct ht_node *pair = tab[position]; pair; pair = pair->next) mapfunc(pair->key, pair->val, arg); } void ht_map_destroy(hashtable_t *ht, void *arg, void (*mapfunc)(void *key, void *val, void *arg)) { // If mapfunc() deallocates keys, then the next 2 lines require // assumption on ht_destroy(), that it doesn't call ht->hashfunc() // or ht->cmpfunc() on keys. ht_map(ht, arg, mapfunc); ht_destroy(ht); } // These 2 functions are for easy making of hashtable with strings as // keys. size_t ht_string_hash(const char *key) { size_t i = 0, hash = (size_t) 0xa1bad2dead3beef4; do { char shift = ((unsigned char) key[i]) % sizeof(size_t); hash += ((hash >> shift) | (hash << (sizeof(size_t) - shift))) ^ key[i]; } while (key[i++]); return hash; } int ht_string_init(hashtable_t *ht) { return ht_init(ht, (size_t (*)(void*)) &ht_string_hash, (int (*)(void*, void*)) &strcmp); }