
CTF — GNU Guix storefile mistake

May 27, 2024

Functional package management in a pill

Dolstra, Eelco (2006). “The Purely Functional Software
Deployment Model” (Ph.D.). Utrecht University

pioneered by Nix

also employed by GNU Guix

no Filesystem Hierarchy Standard (no /usr/bin, /usr/share,
etc.)

packages live in a store directory, e.g.

/gnu/store/y0d8ab1mi6lh0a3vpx5lyd4ksq9wbn4x-orc-0.4.32
/gnu/store/9pypr3c3y379shbwm9ilb4pik9mkfd83-mesa-22.2.4
/gnu/store/rv91v4s30kcjh7xq6k4l2njklk79frxk-freeglut-3.4.0
/gnu/store/30zfbjasrsk2wg8nhsd1xgi3q3n9796z-less-608

a daemon builds packages from definitions and puts them
in the store

Functional package management in a pill

Dolstra, Eelco (2006). “The Purely Functional Software
Deployment Model” (Ph.D.). Utrecht University

pioneered by Nix

also employed by GNU Guix

no Filesystem Hierarchy Standard (no /usr/bin, /usr/share,
etc.)

packages live in a store directory, e.g.

/gnu/store/y0d8ab1mi6lh0a3vpx5lyd4ksq9wbn4x-orc-0.4.32
/gnu/store/9pypr3c3y379shbwm9ilb4pik9mkfd83-mesa-22.2.4
/gnu/store/rv91v4s30kcjh7xq6k4l2njklk79frxk-freeglut-3.4.0
/gnu/store/30zfbjasrsk2wg8nhsd1xgi3q3n9796z-less-608

a daemon builds packages from definitions and puts them
in the store

2
0
2
4
-0
5
-2
7

CTF — GNU Guix storefile mistake

Functional package management in a pill

• we’re using GNU Guix here (no, not the trademarked GUIX. . .)

• store filename determine by hash of package inputs + definition

• multiple versions of a package can coexist

• per-project development environments

• easy rollbacks

• emphasis on reproducible builds

Functional package management in a pill (sample package)

$ cd /gnu/store/30zfbjasrsk2wg8nhsd1xgi3q3n9796z-less-608/

$ find . -type f

./bin/less

./bin/lessecho

./bin/lesskey

./etc/ld.so.cache

./share/doc/less-608/LICENSE

./share/doc/less-608/COPYING

./share/man/man1/lessecho.1.gz

./share/man/man1/lesskey.1.gz

./share/man/man1/less.1.gz

$ ls -lh bin/less

-r-xr-xr-x 2 root root 192K Jan 1 1970 bin/less

Functional package management in a pill (sample package)

$ cd /gnu/store/30zfbjasrsk2wg8nhsd1xgi3q3n9796z-less-608/

$ find . -type f

./bin/less

./bin/lessecho

./bin/lesskey

./etc/ld.so.cache

./share/doc/less-608/LICENSE

./share/doc/less-608/COPYING

./share/man/man1/lessecho.1.gz

./share/man/man1/lesskey.1.gz

./share/man/man1/less.1.gz

$ ls -lh bin/less

-r-xr-xr-x 2 root root 192K Jan 1 1970 bin/less2
0
2
4
-0
5
-2
7

CTF — GNU Guix storefile mistake

Functional package management in a pill
(sample package)

• store is read-only (only Nix/Guix daemon can write)

• store files are root-owned and world-readable =¿ secrets must be
managed differently

• dates set to Epoch (but ls -lch shows real creation time)

• the same package won’t be built twice, even if requested by multiple
users

• a package will built again (or grafted) when one of its dependencies
gets updated

• a package not in use can be garbage-collected

• no support for quotas yet as of 2024

Functional package management in a pill (declarative OS)

packages are defined declaratively

services are defined declaratively as well

service configurations are defined declaratively as well . . .

(service httpd-service-type

(httpd-configuration

(config

(httpd-config-file

(server-name "www.example.com")

(document-root "/var/public_html")))))

. . . and result in store files like
/gnu/store/54ywa5x1b75simbvzhxqkfxsjk040ail-httpd.conf

Yay, we can replace Ansible! But what about secrets?

option 1: keep private keys and passwords outside the store
option 2: put them encrypted in the store

Functional package management in a pill (declarative OS)

packages are defined declaratively

services are defined declaratively as well

service configurations are defined declaratively as well . . .

(service httpd-service-type

(httpd-configuration

(config

(httpd-config-file

(server-name "www.example.com")

(document-root "/var/public_html")))))

. . . and result in store files like
/gnu/store/54ywa5x1b75simbvzhxqkfxsjk040ail-httpd.conf

Yay, we can replace Ansible! But what about secrets?

option 1: keep private keys and passwords outside the store
option 2: put them encrypted in the store

Functional package management in a pill (declarative OS)

packages are defined declaratively

services are defined declaratively as well

service configurations are defined declaratively as well . . .

(service httpd-service-type

(httpd-configuration

(config

(httpd-config-file

(server-name "www.example.com")

(document-root "/var/public_html")))))

. . . and result in store files like
/gnu/store/54ywa5x1b75simbvzhxqkfxsjk040ail-httpd.conf

Yay, we can replace Ansible! But what about secrets?

option 1: keep private keys and passwords outside the store
option 2: put them encrypted in the store

Functional package management in a pill (declarative OS)

packages are defined declaratively

services are defined declaratively as well

service configurations are defined declaratively as well . . .

(service httpd-service-type

(httpd-configuration

(config

(httpd-config-file

(server-name "www.example.com")

(document-root "/var/public_html")))))

. . . and result in store files like
/gnu/store/54ywa5x1b75simbvzhxqkfxsjk040ail-httpd.conf

Yay, we can replace Ansible! But what about secrets?

option 1: keep private keys and passwords outside the store
option 2: put them encrypted in the store

2
0
2
4
-0
5
-2
7

CTF — GNU Guix storefile mistake

Functional package management in a pill
(declarative OS)

• GNU Guix and Nix have their DSLs (the first one is actually Scheme
Lisp + some APIs)

• on Guix/Nix server packages and configurations are immutable (we
can switch to different ones but not alter the existing ones) —
convenient

• an application may require database credentials, some API token, a
private key for TLS certificate, etc.

• encrypted secrets in store — one master key kept outside the store

Sensitive information exposure scenario

challenge — password hunt in /gnu/store

“You’re an employee of a secret government agency. Analysis of
wiretap recordings have lead the agency to believe that an
individual known as Abdul Al-Inh-Ohn-Ih has come into possession
of highly classified government documents. If this turn out true
and Abdul blows the whistle on information from those materials,
years of intelligence efforts shall be ruined.

Abdul has been using the Matrix protocol for some of his
communication. Your current task is to get access to his Matrix
account. Start your investigation by taking a look at his blog.”

Sensitive information exposure scenario

challenge — password hunt in /gnu/store

“You’re an employee of a secret government agency. Analysis of
wiretap recordings have lead the agency to believe that an
individual known as Abdul Al-Inh-Ohn-Ih has come into possession
of highly classified government documents. If this turn out true
and Abdul blows the whistle on information from those materials,
years of intelligence efforts shall be ruined.

Abdul has been using the Matrix protocol for some of his
communication. Your current task is to get access to his Matrix
account. Start your investigation by taking a look at his blog.”

2
0
2
4
-0
5
-2
7

CTF — GNU Guix storefile mistake

Sensitive information exposure scenario

A user of certain shared GNU Guix system has put a secret (a password) in
/gnu/store by mistake. The CTF competitioneer has to SSH into another
account on said system and find the password.

• we have some lore

• real-world references might be intended or not. . .

• no direct info about the exposures (one needs to figure this out)

Investigation (Abdul’s blog)

Investigation (Abdul’s blog)

2
0
2
4
-0
5
-2
7

CTF — GNU Guix storefile mistake

Investigation (Abdul’s blog)

• language — itself a hint Abdul is likely to make mistakes

• only the few relevant blog entries (no misleading of competitioneers)

• mechanics of Guix relevant to the challenge are touched in the posts

• some extra effort required — obtaining a Gemini browser

Investigation (peeking through Gemini)

Investigation (peeking through Gemini)

2
0
2
4
-0
5
-2
7

CTF — GNU Guix storefile mistake

Investigation (peeking through Gemini)

• most relevant parts of blog only accessible through Gemini (a
lightweight alternative to HTTP)

• a Gemini browser “Lagrage” recommended in HTTP part of Abdul’s
blog

Investigation (Spotting mistakes)

configuration which hits a mistake is included in Abdul’s blog

;;; ...

(list (shepherd-service

(provision ’(mattermost))

(modules ’((shepherd support))) ;for ’%user-log-dir’

(start #~(make-forkexec-constructor

’(#$(file-append matterbridge "/bin/matterbridge")

"--conf"

#$(local-file "config.toml"))

#:log-file (string-append %user-log-dir

"/matterbridge.log")))

(stop #~(make-kill-destructor))

(documentation "Start local matterbridge.")))))

;;; ...

Investigation (Spotting mistakes)

configuration which hits a mistake is included in Abdul’s blog

;;; ...

(list (shepherd-service

(provision ’(mattermost))

(modules ’((shepherd support))) ;for ’%user-log-dir’

(start #~(make-forkexec-constructor

’(#$(file-append matterbridge "/bin/matterbridge")

"--conf"

#$(local-file "config.toml"))

#:log-file (string-append %user-log-dir

"/matterbridge.log")))

(stop #~(make-kill-destructor))

(documentation "Start local matterbridge.")))))

;;; ...2
0
2
4
-0
5
-2
7

CTF — GNU Guix storefile mistake

Investigation (Spotting mistakes)

• the config suggests Matrix password is in config.toml in /gnu/store

Investigation (Account creation)

Investigation (Account creation)

2
0
2
4
-0
5
-2
7

CTF — GNU Guix storefile mistake

Investigation (Account creation)

• both Abdul’s blog and the server’s main website urge one to make
an account and log in to the tilde server with SSH

• emails entered not actually used

Hint 1

Hint 1

2
0
2
4
-0
5
-2
7

CTF — GNU Guix storefile mistake

Hint 1

• page with the hint accessible through Gemini only

Hint 2

Hint 2

2
0
2
4
-0
5
-2
7

CTF — GNU Guix storefile mistake

Hint 2

• link to GNU Guix HTML documentation

• suggestion that it has sth to do with the local-file macro (used in
Abdul’s code)

Finding the flag

~$ (cd /gnu/store && ls -cht *config.toml*)

qmdh299prllp4fygw893w00lv9ypi5z2-config.toml

~$

rather expected contents of
qmdh299prllp4fygw893w00lv9ypi5z2-config.toml

...

[matrix.noevil-pl]

Server="https://matrix.noevil.pl"

Login="abdul"

Password="fla\u0067{full_source-bootstrap}"

RemoteNickFormat="[{PROTOCOL}] <{NICK}> "

NoHomeServerSuffix=false

...

Finding the flag

~$ (cd /gnu/store && ls -cht *config.toml*)

qmdh299prllp4fygw893w00lv9ypi5z2-config.toml

~$

rather expected contents of
qmdh299prllp4fygw893w00lv9ypi5z2-config.toml

...

[matrix.noevil-pl]

Server="https://matrix.noevil.pl"

Login="abdul"

Password="fla\u0067{full_source-bootstrap}"

RemoteNickFormat="[{PROTOCOL}] <{NICK}> "

NoHomeServerSuffix=false

...

2
0
2
4
-0
5
-2
7

CTF — GNU Guix storefile mistake

Finding the flag

• “g” in flag replaced with unicode escape to make bypassing with
recursive grepping harder

Credits

GNU Guix logo — Luis Felipe López Acevedo (CC BY-SA 4.0
International)

red flag — by Wikipedia user Wereon, uploaded 2007
(released into public domain)

Nix logo — Tim Cuthbertson (CC BY-SA 4.0 International)

Awesome Demon — by Openclipart user qubodup, uploaded
2014 (released into public domain with CC Zero v1.0)

